Генератор для изготовления катушки на металлоискатель. Импульсный металлодетектор

Если во времязадающую цепь автогенератора кроме резистора включить еще и катушку индуктивности L1 (рис. 5.79), то в такой схеме частота будет зависеть от параметров катушки. Как известно, близко расположенные токопроводящие предметы влияют на индуктивность катушки, а значит и на изменение частоты генератора. Если к выходу такого генератора подключить современный мультиметр, имеющий режим измерения частоты, то такое устройство можно использовать в качестве металлоискателя.

Рис. 5.79. Схема генератора для металлоискателя

Для увеличения дальности обнаружения катушку датчика (L1) придется сделать объемной, как это показано на рис. 5.79, б. Для намотки провода удобно использовать пенопласт, вырезав из него соответствующий каркас. После намотки провода надо обмотать лакотканью или изолентой, что придаст жесткость рамке и защитит ее от влаги. После этого необходимо еще обмотать катушку алюминиевой фольгой, которая будет являться электростатическим экраном. В месте вывода проводов оставляется зазор 10—20 мм, т. е. фольга не должна иметь замкнутый контур, чтобы не ухудшать добротность основной катушки. Как придать катушке более привлекательный вид и сделать удобное для использования крепление, думаю, вы догадаетесь сами.

Литература:
Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.

Устройство позволяющее отыскивать металлические предметы, расположенные в нейтральной среде, например, грунте, за счет их проводимости называют металлодетектором (металлоискателем). Это прибор позволяет находить металлические предметы в различных средах, в том числе и в организме человека.

Во многом благодаря развитию микроэлектроники металлодетекторы, которые выпускают множество предприятий по всему свету, обладают высокой надежностью и небольшими габаритно-весовыми характеристиками.

Еще не так давно, такие приборы можно было чаще всего увидеть у саперов, то теперь, ими пользуются спасатели, кладоискатели, работники коммунальных служб при поиске труб, кабелей и пр. Более того, многие «кладоискатели» применяют металлодетекторы, которые они собирают своими руками.

Конструкция и принцип работы прибора

Металлодетекторы, предлагаемые на рынке, работают на разных принципах. Многие считают, что они используют принцип импульсной эхо- или радиолокации. Их отличие от локаторов заключается в том, передаваемый и принимаемый сигналы, действуют постоянно и одновременно, ко всему прочему они работают на совпадающих частотах.

Приборы, работающие по принципу «прием-передача», регистрируют отраженный (переизлученный) от металлического предмета сигнал. Этот сигнал появляется из-за воздействия на металлический предмет переменным магнитным полем, которое генерируют катушки металлоискателя. То есть в конструкции устройств этого типа предусмотрено наличие двух катушек, первая – передающая, вторая – приемная.

Приборы этого класса обладают следующими достоинства:

  • простота конструкции;
  • большие возможности для обнаружения металлических материалов.

В тоже время, металлоискатели этого класса обладают определенными недостатками:

  • металлоискатели могут быть чувствительными к составу грунта, в котором производят поиск металлических предметов.
  • технологические сложности при производстве изделия.

Другими словами, устройства этого типа перед работой необходимо настраивать своими руками.

Другие устройства иногда называют металлоискатель на биениях. Это название пришло из далекого прошлого, точнее со времен, когда широко эксплуатировались супергетеродинных приемников. Биения – это явление, которое становится заметно при суммировании двух сигналов с близкими частотами и равными амплитудами. Биение заключается в пульсировании амплитуды просуммированного сигнала.

Частота пульсирования сигнала равняется разностью частот суммируемых сигналов. Пропуская такой сигнал через выпрямитель, его еще называют детектором, выделяют, так называемую разностную частоту.

Такая схема долго применялось, но в наши дни, ее не применяют. Их сменили синхронные детекторы, но термин остался в применении.

Металлодетектор на биении работает, используя следующий принцип – он регистрирует разность частот от двух генераторных катушек. Одна частота стабильна, вторая содержит в себе катушку индуктивности.

Устройство настраивают своими руками так, чтобы генерируемые частоты совпадали или по крайней мере были близки. Как только, в зону действия попадает металл, происходит изменение заданных параметров и частота изменяется. Разность частот может быть зарегистрирована разными способами, начиная от наушников и заканчивая цифровыми методами.

Устройства этого класса отличаются простой конструкцией датчика, слабой чувствительностью к к минеральному составу почвы.

Но кроме этого, при их эксплуатации необходимо учитывать и то, что у них высокое энергопотребление.

Типовая конструкция

В состав металлоискателя входят следующие составные части:

  1. Катушка – это конструкция коробчатого типа, в ней располагают приемник и передатчик сигнала. Чаще всего катушка имеет эллиптическую форму и для ее изготовления применяют полимеры. К ней подведен провод, соединяющий ее с блоком управления. Это провод передает сигнал от приемника к блоку управления. Передатчик формирует сигнал при обнаружении металла, который транслируется на приемник. Катушку устанавливают на нижнюю штангу.
  2. Металлическую часть, на которой фиксируется катушка и настраивается угол ее наклона, называют нижней штангой. Благодаря такому решению происходит более тщательное исследование поверхности. Существуют модели, в которых нижняя часть может регулировать высоту металлоискателя и обеспечивает телескопическое соединение со штангой, которую называют средней.
  3. Средняя штанга – это узел, расположенный между нижней и верхней штангами. На ней закрепляют приспособления, позволяющие регулировать размеры устройства. на рынке можно встретить модели, которые состоят из двух штанг.
  4. Верхняя штанга, как правило, имеет изогнутый вид. Она напоминает, букву S. Такая форма считается оптимальной для закрепления ее на руке. На ней устанавливают подлокотник, блок управления и рукояткой. Подлокотник и рукоятку изготавливают из полимерных материалов.
  5. Блок управления металлодетектором необходим для обработки получаемых от катушки данных. После того, как сигнал преобразован он направляется на наушники или другие средства индикации. Кроме того, блок управления предназначен для регулировки режима работы устройства. Провод от катушки присоединяется с помощью быстросъемного устройства.

Все устройства входящие в состав металлоискателя выполняют во влагозащищенном исполнении.

Вот такая относительная простота конструкция и позволяет изготовлять металлоискатели своими руками.

Разновидности металлодетекторов

На рынке представлена широкая номенклатура металлодетекторов, применяемых во многих сферах. Ниже приведен список, в котором указаны некоторые разновидности этих устройств:

Большая часть современных металлоискателей может найти металлические объекты на глубине до 2,5 м, специальные глубинные изделия могут обнаружить изделие на глубине до 6 метров.

Частота работы

Второй параметр – это частота работы. Все дело в том, что низкие частоты позволяют металлоискателю видеть на довольно большую глубину, но мелкие детали они увидеть не в состоянии. Высокие частоты позволяют заметить мелкие объекты, но не допускает просмотра грунта на большую глубину.

Самые простые (бюджетные) модели работают на одной частоте, модели которые относят к среднему ценовому уровню используют в работе 2 и более частоты. Существуют модели, которые при поиске применяют 28 частот.

Современные металлодетекторы оснащаются такой функцией, как дискриминация металла. Она позволяет различать тип материала находящегося на глубине. При этом при обнаружении черного металла в наушниках поисковика будет звучать один звук, а при обнаружении цветного другой.

Такие устройства относят к ипульсно – балансным. Они используют в своей работе частоты от 8 до 15 кГц. В качестве источника применяют батареи в 9 – 12 В.

Приборы этого класса способны обнаружить золотой предмет на глубине в несколько десятков сантиметров, а изделия из черных металлов на глубине порядка 1 и более метра.

Но, разумеется, эти параметры зависят от модели устройства.

Как собрать самодельный металлоискатель своими руками

На рынке существует множество моделей приборов для поиска металла в грунте, стенах и пр. Несмотря на его внешнюю сложность, изготовить металлоискатель своими руками не так и сложно и это может сделать практически любой человек. Как уже отмечалось выше, любой металлоискатель состоит из следующих ключевых компонентов – катушки, дешифратора и сигнализирующего устройства блока питания.

Для сборки своими руками такого металлоискателя необходим следующий набор элементов:

  • контроллер;
  • резонатор;
  • конденсаторы разных типов, в том числе и пленочные;
  • резисторы;
  • излучатель звука;
  • стабилизатор напряжения.

Металлоискатель простейший своими руками

Схема металлоискателя не отличается сложностью, а найти ее можно или на просторах мировой сети, или в специализированной литературе. Выше приведен перечень радиоэлементов, которые пригодятся для сборки металлоискателя своими руками в домашних условиях. Простой металлоискатель можно собирать своими руками, используя паяльник или другой доступный способом. Главное при этом, детали не должны касаться корпуса прибора. Для обеспечения работы собранного металлоискателя применяют источники питания в 9 – 12 вольт.

Для намотки катушки применяют провод с диаметром сечения в пределах 0,3 мм, разумеется, это будет зависеть от выбранной схемы. Кстати, намотанную катушку необходимо защитить от воздействия постороннего излучения. Для этого ее экранируют своими руками при помощи обыкновенной пищевой фольги.

Для прошивки контроллера применяют специальные программы, которые также можно найти на просторах интернет.

Металлоискатель без микросхем

Если у начинающего «кладоискателя» нет желания связываться с микросхемами, существуют схемы и без них.

Существуют более простые схемы, основанные на использовании традиционных транзисторов. Такой прибор может найти металл на глубине в несколько десятков сантиметров.

Глубинные металлодетекторы используют для поиска металлов на больших глубинах. Но стоит отметить, что стоят они недешево и поэтому вполне возможно его собрать его своими руками. Но перед тем, как приступить к его изготовлению надо понять как работает типовая схема.

Схема глубинного металлоискателя не самая простая и существует несколько вариантов его исполнения. Перед его сборкой необходимо подготовить следующий набор деталей и элементов:

  • конденсаторы разного типа – пленочные, керамические и пр.;
  • резисторы разного номинала;
  • полупроводники – транзисторы и диоды.

Номинальные параметры, количество зависят от выбранной принципиальной схемы прибора. Для сборки приведенных элементов потребуется паяльник, набор инструмента (отвертка, плоскогубцы, кусачки пр.), материал для изготовления платы.

Процесс сборки глубинного металлодетектора выглядит примерно следующим образом. Сначала собирают блок управления, основу которого составляет печатная плата. Ее изготавливают из текстолита. Затем схему сборки переносят непосредственно на поверхность готовой платы. После того, как рисунок перенесен, плату необходимо протравить. Для этого применяют раствор, в который входят перекись водорода, соль, электролит.

После того, как выполнено травление платы, в ней необходимо выполнить отверстия для установки компонентов схемы. После того, как выполнено лужение платы. Наступает самый важный этап. Установка и пайка своими руками деталей на подготовленную плату.

Для намотки катушки своими руками применяют провод марки ПЭВ с диаметром 0,5 мм. Количество витков и диаметр катушки зависят от выбранной схемы глубинного металлоискателя.

Немного о смартфонах

Существует мнение о том, что вполне возможно изготовить металлоискатель из смартфона. Это не так! Да, есть приложения, которые устанавливают под ОС Android.

Но по факту, после установки такого приложения он действительно сможет находить металлические предметы, но только предварительно намагниченные. Искать и тем более дискриминировать металлы он не сможет.

Не для кого не секрет, что , как впрочем, и просто vtnfkkjltntrnjh видит метал за счет основной его части – поисковой головки.

Поисковая головка любого металлодетектора (и тоже vtnfkkjltntrnjh ) состоит из катушки или нескольких катушек индуктивности. Принцип работы металлодетектора я уже описывал и потому повторятся здесь не буду. Кому интересно, тот прочитает мою . Ну а здесь дело пойдет именно о резонансе и особенностях конструктива поисковых головок IB детекторов, на основе резонанса.

Итак, приведем краткое описание из энциклопедии, что же такое резонанс.

Рис.1

Резонанс – это явление резкого возрастания амплитуды вынужденных колебаний. То есть такое возростание может наступит при совпадении частоты задающего генератора металлодетектора и настроенную на эту частоту систему состоящую из катушки индуктивности (контура) и резонансного конденсатора.

Рис.2. Резонанс токов а), и резонанс напряжений б).

И вот, казалось бы, что увеличение амплитуды, лишь следствие резонанса, а причина - это совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы, но в этом вопросе и по сей день много тайн окутанных «пеленой тумана».

Нам, резонанс в системе контуров (передающего и приемного) нужен в первую очередь для выделения и усиления даже очень слабых колебаний от искомых целей – объектов поиска.

С одной стороны нам нужна мощность в генераторной катушке, достигаемая за счет резонанса, дабы получить большую глубину обнаружения целей. Давайте посмотрим на то, как это решает , ну имногие приборы с резонансной системой, изображенной на рисунке 2 б.

Подобные решения применялись и применяются сегодня во многих металлодетекторах. Это и нашумевший в свое время Анкер 50, и Гроза разных модификаций и мои приборы, а также и многие другие…

Но вот только сильно большая амплитуда сигнала в контуре была и камнем преткновения как при настройке системы контуров в поисковой головке на минимуму сигнала в приемной, так и на стабильность работы и «уходе» баланса при работе (расстройка контуров).

Я решал эту проблему поначалу немного ограничивая амплитуду сигнала резистором стоящим перед резонансной системой (например вместо 1 Ома, ставил 2 или 4 Ома). Чувствительность была выше обычного прибора, но и более стабильна, чем с большей амплитудой сигнала…

Но вот однажды, интересуясь, из любопытства работами Николы Теслы (а он с резонансами дружил ого-го), решил опробовать в резонансном передающем контуре металлодетектора бифилярную катушку.

Не желая сгоряча тратить время на новую головку сначала обзвонил знакомых умельцев постройки и проектированию металлодетекторов с Киева и Донецка. Ну спрашиваю – не пробовали ставить бифиляр? Нет говорят, нет смысла… Ну и всякие там доводы.

Подумал я еще немного. Нет, думаю, все же испытаю.

Намотку контура делал по такой схеме (смотрите рисунок ниже).


И вот в ходе мозгового штурма решил: оптимальнее всего будет испытать этот вариант (бифилярную намотку передающей катушки) на поисковой головке по системе «DD».


В патенте Теслы говорится, что такая система имеет очень высокое усиление по мощности сигнала. Да, многие скажут, что такая катушка естественно имеет большую межвитковую емкость. Так вот эта емкость, равномерно и непосредственно находящаяся в самой катушке производит гораздо большую, реально "осязаемую" работу, чем маленький конденсатор, висящий у контура...

Чтобы не утомлять читателя своими доводами и домыслами скажу о результатах.

Я опробовав две поисковые головки «DD» одинакового диаметра, одинакового количества витков, но передающие контура разнились намоткой (в одной обычная намотка «в навал», в другой «бифилярная»). Так вот бифилярная была чувствительнее на 30% , а ее потребление по току было даже немного ниже!

Выложив на один известный форум свой эксперимент, хотел услышать отзывы, или пробы других конструкторов и узнать о их результатах. Первые отзывы были обнадеживающими, но вот через 2 дня тема исчезла из форума а модератор «отморозился», что ничего не знает, ничего не удалял.

Так что пробуйте что-то новое неординарное, и может ваш прибор, с стандартной начинкой но на каком то новом варианте резонансной системы заработает так, что другие просто будут в шоке.

Для ваших экспериментов подойдут практически все варианты передатчиков с последовательным резонансом, как , и другие vtnfkkjltntrnjh .

Удачи!

Александр Сербин (г.Харьков)

Если у меня есть выбор, я возьму металлоискатель с высокой частотой. Мои находки монеты, крестики, небольшие исторические артефакты — для такого набора целей, высокая частота работает лучше. Но при этом, я знаю положительные свойства низкочастотных детекторов. Если есть такая возможность, перспективные точки копа надо по любому добивать низкой частотой.

Как частота металлоискателя влияет на поиск, и на какой частоте лучше вести поиск.

Частоты металлоискателя

Первым пунктом в характеристиках металлоискателя, всегда стоит тип схемы детектора (например, VLF, или импульсный). Второй пункт — рабочая частота. Именно эти два пункта в сочетании, и определяют общие возможности вашего детектора.

Частота металлоискателя делится так:

  • 2-2,5 кГц — Низкая частота
  • 6-12 кГц — Средняя частота
  • 15-22 кГц — Высокая частота
  • от 30 кГц и выше — Супер высокая частота

Как частота влияет на поиск

Чем ниже частота , тем выше чувствительность к целям из металлов с высокой проводимостью (медь, бронза, серебро). Плюс, преимущество в поисках больших находок большой массы (в таких находках обычно учитывается площадь, но можно принимать в расчет и массу находки).

Низкие частоты обладают большей способностью проникать в почву, также они хороши для почв с высоким уровнем минерализации, соли. Часто низкочастотные сигналы искажаются из-за электромагнитных помех.

Чем выше частота , тем выше чувствительность к целям из металлов с низкой проводимостью (алюминий, никель и т.д.) и к мелким и тонким объектам.

Высокие частоты имеют хуже проникают в почву, не подходят для поиска по минерализованным и просоленным почвам. Однако при этом высокочастотные сигналы не страдают от электропомех.

Средние частоты представляют собой компромисс между низкими и высокими. Средняя частота считается универсальной, подходящая под любой тип находок.

Не следует понимать буквально, якобы низкочастотный металлоискатель вовсе не будет замечать мелкие находки. Видеть будет, но с учетом специфики частот.

У низкочастотных металлоискателей будет более слабый отклик на мелкую цель, у высокочастотных - более четкий. Например, металлоискатель с частотой 4 кГц, и металлоискатель с 18 кГц обнаружат медную монетку на глубине 15 см. Но вот монета уже будет глубже, то при 4 кГц ее будет слышно сильнее. С другой стороны, тонкая единичная монета на ребре, при глубине 8 см — лучше распознается с частотой 18 кГц (именно единичная, монеты на ребре и в стопке, для этой цели низкая частота будет лучше).

Какая частота для чего

Если ваша точка копа перспективна, есть смысл сначала выбивать ее на высокой частота, далее повторно на низкой. Высокая частота лучше для небольших единичных находок, с акцентом на цветной металл.

Низкая частота менее подвержена к внешним помехам — минерализации, электропомехам. У низкой частоты глубина обнаружения выше. Для крупных находок, точность работы дискриминации выше. Например, для кладов или монет сваленных в кучу.

Еще один пример, как работает частота металлоискателя. Прибор Minelab X-Terra 705, находка стопка монет (залипуха из кошелька). Если монеты в грунте будут на ребре — средняя частота дает отклик железа, хотя монеты 100% медь.

Низкая частота на стопке монет — у вас уверенный копаемый сигнал.

P.S. Обратите внимание ➨ ➨ ➨ Тема бомба - . Посмотрите, не пожалеете.

↓↓↓ А теперь переместимся в комментарии и узнаем мнение экспертов. Крутите страницу вниз ↓↓↓, там отзывы копателей, МД специалистов, дополнительная информация и уточнения от авторов блога ↓↓↓


Это обеспечивает, с одной стороны, слабую реакцию на нежелательные сигналы (например, сигналы, возникающие при наличии мокрого песка, мелких кусочков металла и т. д.), а с другой стороны, хорошую чувствительность при поиске скрытых водопроводных труб и трасс центрального отопления, монет и других металлических предметов.

Для реализации и настройки схемы требуется соответствующий навык и опыт, поэтому начинающему любителю-конструктору следует обратиться сначала к более простым схемам и устройствам, описанным в данной книге.

Блок-схема металлоискателя приводится на рис.1. Генератор металлоискателя возбуждает колебания в передающей катушке на частоте около 3 кГц, создавая в ней переменное магнитное поле. Приемная катушка расположена перпендикулярно передающей катушке таким образом, что проходящие через неё магнитные силовые линии создают малую ЭДС. На выходе приемной катушки сигнал либо отсутствует, либо очень мал. Металлический предмет, попадая в поле катушки, изменяет значение индуктивности, и на выходе появляется электрический сигнал, который затем усиливается, выпрямляется и фильтруется. Таким образом, на выходе системы имеем сигнал постоянного напряжения, значение которого слегка возрастает при приближении катушки к металлическому предмету.

Рис.1. Блок-схема металлоискателя:
1 - генератор (3 кГц); 2 - дискриминатор; 3 - катушки металлоискателя; 4 - усилитель высокой частоты; 5 - детектор; 6 - фильтр низких частот; 7 - звуковой генератор; 8 - электронный ключ звукового сигнала; 9 - усилитель выходных сигналов; 10 - громкоговоритель; 11 - схема сравнения; 12 - регулируемое опорное напряжение.

Этот сигнал поступает на один из входов схемы сравнения, где сравнивается с опорным напряжением, которое прикладывается к его второму входу. Уровень опорного напряжения отрегулирован таким образом, что даже небольшое увеличение напряжения сигнала приводит к изменению состояния на выходе схемы сравнения. Это в свою очередь приводит в действие электронный переключатель, в результате чего на выходные усилительные каскады поступает звуковой сигнал, оповещающий оператора о присутствии металлического предмета.

Принципиальная электрическая схема металлоискателя представлена на рис. 2. Передатчик, состоящий из транзистора VT1 и связанных с ним элементов, возбуждает колебания в катушке L1. Сигналы, поступающие на катушку L2, затем усиливаются микросхемой D1 и выпрямляются микросхемой D2, включенной по схеме амплитудного детектора.

Рис.2. Электрическая схема мкталлоискателя. Передатчик показан красным цветом.

Сигнал с детектора поступает на конденсатор С9 и сглаживается фильтром низких частот, который состоит из резисторов R14, R15 и конденсаторов С10 и С11 Затем сигнал поступает на вход схемы сравнения D3, где сравнивается с опорным напряжением, устанавливаемым переменными резисторами RP3 и RP4. Переменный резистор RP4 служит для быстрой и грубой настройки, a RP3 обеспечивает точную регулировку опорного напряжения. Генератор, собранный на транзисторе с одним переходом VT2, работает в непрерывном режиме, однако сигнал, вырабатываемый им, поступит на базу транзистора VT4 только тогда, когда закроется транзистор VТ3, так как, находясь в открытом состоянии, этот транзистор шунтирует выход генератора. При поступлении сигнала на вход микросхемы D3 напряжение на ее выходе уменьшается, закрывается транзистор VТЗ и сигнал от транзистора VТ2 через транзистор VТ4 и регулятор громкости RP5 поступает на выходной каскад и громкоговоритель.

В схеме используются два источника питания, что устраняет возможность возникновения любой обратной связи выхода схемы к ее чувствительному входу. Основная схема питается от батареи напряжением 18В, которое с помощью микросхемы D4 понижается до стабильного напряжения 12В. При этом снижение напряжения батареи во время работы схемы не вызывает изменения настройки. Выходные каскады питаются от отдельного источника питания напряжением 9В. Требования по потреблению мощности довольно низкие, поэтому для питания устройства можно использовать три аккумуляторные батареи. Батарея питания выходного каскада не требует специального выключателя, так как в отсутствие сигнала выходной каскад не потребляет тока.

Металлоискатель - довольно сложное устройство, поэтому сборку схемы следует проводить покаскадно с тщательной проверкой каждого каскада. Схему монтируют на плате, на которой имеются 24 медные полоски по 50 отверстий в каждой с шагом 2,5 мм. Прежде всего в полосках делают 64 разреза, как показано на рис. 3, и высверливают три установочных отверстия.

Рис.3. Фольгированная сторона платы.

Затем на обратной стороне платы устанавливают 20 перемычек, штыри для внешних соединений, а также два штыря для конденсатора С5 (рис. 4). Затем устанавливают конденсаторы С16, С17 и микросхему D4. Эти элементы образуют источник питания с напряжением 12В. Проверка этого каскада осуществляется путем временного подключения батареи напряжением 18В. При этом напряжение на конденсаторе С 16 должно составлять 12±0,5В. После этого проводится монтаж элементов выходного каскада: резисторов R23-R26, конденсаторов С14 и С15 и транзисторов VT4-VT6. Следует учесть, что корпус транзистора VТ6 соединен с его коллектором, поэтому контакт корпуса с соседними элементами и перемычками недопустим. Так как выходной каскад при отсутствии сигнала не потребляет тока, его проверяют временным подсоединением громкоговорителя, переменного резистора RP5 и батареи напряжением 9В.

Рис.4. Расположение элементов на плате.

Затем устанавливают резисторы R20-R22 и транзистор VT2, образующие генератор звуковых сигналов. При подключении двух источников питания в динамике прослушивается звуковой фон, меняющийся с изменением положения ручки регулятора громкости. После этого на плате монтируют резисторы R16-R19, конденсатор С12, транзистор VТЗ и микросхему D3. Работа схемы сравнения проверяется следующим образом. К измерительному входу D3 подключают переменные резисторы RP3 и RP4. Этот вход образуется с помощью двух резисторов сопротивлением 10 кОм, один из которых подключается к положительной шине питания +12В, а другой - к нулевой шине. Вторые выводы резисторов подсоединяют к выводу 2 микросхемы D3. Перемычка от этого вывода служит временной точкой соединения. При грубой настройке (включены обе батареи), которая осуществляется переменным резистором RP4, в определенном его положении происходит срыв звукового сигнала, в то время как при точной настройке переменным резистором RP3 должно осуществляться плавное изменение сигнала вблизи этого положения. При выполнении этих условий приступают к установке резисторов R6-R15, конденсаторов С6-С11, диода VD3 и микросхем D1 и D2.

Включив источник питания, сначала проверяют наличие сигнала на выходе микросхемы D1 (вывод 6). Он не должен превышать половины значения напряжения источника питания (приблизительно 6 В). Напряжение на конденсаторе С9 не должно отличаться от напряжения выходного сигнала этой микросхемы, хотя наводки от сети переменного тока могут вызвать небольшое увеличение этого напряжения. Касание пальцем входа микросхемы (основания конденсатора С6) вызывает увеличение напряжения из-за повышения уровня шумов. Если регуляторы настройки находятся в положении, при котором звуковой сигнал отсутствует, касание пальцем конденсатора С6 приводит к появлению и исчезновению этого сигнала. На этом предварительная проверка работоспособности каскадов заканчивается.

Окончательная проверка и настройка металлоискателя проводятся после изготовления катушек индуктивности. После предварительной проверки каскадов схемы на плате устанавливаются остальные элементы за исключением конденсатора С5. Переменный резистор RP2 временно устанавливается в среднее положение. Внутренняя разводка схемы показана на рис.5. Плата крепится к L-образному алюминиевому шасси через пластмассовые шайбы (для устранения возможности короткого замыкания) с помощью трех винтов. Шасси закрепляется в корпусе пульта управления двумя болтами, удерживающими два зажима, предназначенные для крепления корпуса пульта к штанге искателя. Боковая сторона шасси обеспечивает фиксацию источников питания в корпусе. При сборке пульта следует убедиться, что выводы переключателя на обратной стороне переменного резистора RP5 не касаются элементов платы. После высверливания прямоугольного отверстия приклеивается динамик.

Рис.5. Монтажная схема включения узлов металлоискателя:
1 - громкоговоритель; 2 - передающая катушка; 3 - приемная катушка; 4 - 4-жильный экранированный кабель; 5 - питание 9В; 6 -питание 18В

Штанга и соединительные части, образующие держатель головки искателя (рис.6), изготавливаются из пластмассовых трубок диаметром 19 мм. Сама головка искателя представляет собой тарелку диаметром 25 см, изготовленную из прочной пластмассы. Внутренняя ее часть тщательно зачищается наждачной бумагой, что обеспечивает хорошее склеивание с эпоксидной смолой.

Рис.6. Элементы держателя головки металлоискателя

(а) и вид собранного держателя (б) :
1 - ручка велосипедного руля; 2 - пять трубок, согнутых под углом 135°; 3 - три соединителя трубок длиной 5 см; 4 - фиксирующие зажимы для крепления блока управления к штанге; 5 - штанга держателя головки искателя; 6 - Т-образный соединитель; 7 - два трубчатых отрезка длиной 4,5 см; 8 - фиксирующие зажимы, крепящиеся к тарелке и обеспечивающие изменение угла наклона; 9 - пластиковая тарелка диаметром 25 см

Основные характеристики металлоискателей во многом зависят от применяемых катушек, поэтому их изготовление требует особого внимания. Катушки, имеющие одинаковую форму и размеры, наматывают на D-образный контур, который образован из штырей, закрепленных на подходящем куске платы (рис. 7). Каждая катушка состоит из 180 витков эмалированного медного провода диаметром 0,27 мм с отводом от 90-го витка. Прежде чем снять катушки со штырей, их в нескольких местах перевязывают. Затем каждая катушка обматывается прочной нитью, чтобы витки плотно прилегали друг к другу. На этом изготовление передающей катушки заканчивается. Приемная же катушка должна быть снабжена экраном.

Рис. 7. Головка металлоискателя (вид спереди) :
1 - разрыв в экранировке; 2 - передающая катушка; 3 - винты фиксирующих зажимов; 4 - контур тарелки; 5 - кабель, проходящий через просверленное в тарелке отверстие; 6 - приемная катушка Рис. 15.7. Катушка индуктивности:

1 - обмотки; 2 - штыри; 3 - центр окружности диаметром 20 см; 4 - петля для центрального отвода; 5 - концы катушек

Экранирование катушки обеспечивается следующим образом. Сначала она обматывается проволокой, а затем обертывается слоем алюминиевой фольги, которая снова обматывается проволокой. Такая двойная обмотка гарантирует хороший контакт с алюминиевой фольгой. В обмотках проволоки и в фольге должен быть предусмотрен небольшой разрыв или зазор, как показано на рис. 15.8, препятствующий образованию замкнутого витка по окружности катушки.

Изготовленные таким образом катушки закрепляются с помощью зажимов,по краям пластмассовой тарелки и подсоединяются к блоку управления при помощи четырёхжильного экранированного кабеля. Два центральных отвода и экран приемной катушки подсоединяются к нулевой шине через экранирующие провода. Если включить устройство и радиоприемник, расположенный недалеко от катушки, можно услышать высокотональный свист (на частоте металлоискателя), обусловленный наводкой звукового сигнала в радиоприемнике. Это указывает на исправность генератора металлоискателя.

В данном случае неважно, на какой диапазон настроен радиоприемник, поэтому для проверки вместо него можно использовать любой кассетный магнитофон. Место рабочего положения катушек определяется либо по выходному сигналу металлоискателя, который должен быть минимальным, либо по показаниям измерительного прибора (вольтметра), подключенного непосредственно к конденсатору С9.

Второй вариант для подгонки катушек значительно проще. Напряжение на конденсаторе должно составлять приблизительно 6В. После этого внешние части катушек приклеиваются эпоксидной смолой, а внутренние, проходящие через центр, остаются незакрепленными, что позволяет провести окончательную настройку.

Окончательная настройка состоит в установке незакрепленных частей катушек в такое положение, при котором предметы из цветного металла, например монеты, вызывают быстрое увеличение выходного сигнала, а стальные предметы - его незначительное уменьшение. Если требуемый результат не достигается, необходимо поменять местами концы одной из катушек. Следует помнить, что окончательная настройка или подгонка катушек должна проводиться при отсутствии металлических предметов. После установки и прочного закрепления катушки покрываются слоем эпоксидной смолы, затем на них накладывается стеклоткань и все это герметизируется эпоксидной смолой.

После изготовления головки искателя в схему встраивается конденсатор С5, переменный резистор RP1 устанавливается в среднее положение, а переменный резистор RP2 настраивается на минимум выходного сигнала. При этом, по одну сторону среднего положения переменный резистор RP1 обеспечивает распознавание стальных предметов, а по другую сторону - предметов из цветного металла. Следует иметь в виду, что при каждом изменении номинального значения сопротивления переменного резистора RP1 необходимо проводить повторную настройку устройства.

На практике металлоискатель представляет собой легкое, хорошо сбалансированное, чувствительное устройство. В течение первых нескольких минут после включения устройства может быть разбаланс нулевого уровня, однако через некоторое время он исчезает или становится незначительным.

Элементы металлоискателя:

Резисторы:

R1,R6, R7, R8 100 кОм
- R2, R3, R22, R23 100 Ом
- R4, R5 6,8 кОм
- R9, R11, R21, R25 10 кОм
- R10 220 кОм
- R14 15 кОм
- R15, R19 68кОм
- R16 8,2 кОм
- R17 18кОм
- R18 3,9 МОм
- R12, R13 47кОм
- R24 4,7 кОм
- R20 33 кОм
- R26 1,8 кОм

Переменные резисторы:

RP1, RP4 10кОм(линейные)
- RP2 10 кОм (микроминиатюрный, с горизонтальной установкой)
- RP3 100 кОм (линейный)
- RP5 10 кОм (совмещённый с переключателем)

Конденсаторы:

С1 100 мкФ, 16 В (электролитический)
- С2, С5, С14 0,01 мкФ
- СЗ, С4 0,22 мкФ
- С6, C13 0,1 мкФ
- С7, С8, С12 1мкФ
- С9 47 мкФ, 16В
- С10 2,2 мкФ, 35В
- С11 0,47 мкФ, 35В
- С15, С16 220 мкФ, 16В (электролитический)
- С17 470 мкФ, 25В (электролитический)

Транзисторы:

VT1, VТ5 BC214L (КТ3107Б, КТ3107И)
- VТ2 TIS43 однопереходный (КТ117)
- VТ3, VТ4 BC184L (КТ3102Д)
- VТ6 BFY51 (КТ630Д)

Диоды:

VDl, VD2, VD3 1N914 (КД521А)

Микросхемы:

D1, D2,D3 САЗ 140 (К1109УД1)
- D4 uA78L12AWC стабилизатор напряжения +12В, 100 мА (К142ЕН1, К142ЕН2)

Плата:

24 медные полоски с 50 отверстиями, шаг 2,5 мм; штыри;

Динамик с сопротивлением катушки 8 Ом;

Эмалированный медный провод диаметром 0,27 мм;
- Ручки управления - 4 шт.;
- 4-х жильный изолированный кабель -2 м;
- Ручка от велосипедного руля.

Случайные статьи

Вверх