Надежный электронный блок зажигания схема. Схема электронного зажигания для автомобиля

Представленная ниже, схема зажигания автомобиля предназначена для опытных радиолюбителей.

Тем, кто ранее собирал простые схемы блоков зажигания и желающим собрать устройство, из которого, максимально «выжато» все или может почти всё!

За истекшие годы стабилизированный блок зажигания повторили очень многие авто- и радиолюбители, и несмотря на выявленные недостатки можно считать что он проверку временем выдержал. Существенно также, что в литературе пока не появились публикации сходных по простоте конструкций с аналогичными параметрами.
Эти обстоятельства и побудили автора сделать ещё одну попытку основательно улучшить показатели блока, сохранив его простоту.

Основное отличие усовершенствованного блока зажигания от — заметное улучшение его энергетических характеристик. Если у исходного блока максимальная длительность искры не превышала 1,2 мс, причем она могла быть получена лишь на самых низких значениях частоты искрообразования, то у нового длительность искры постоянна во всей рабочей полосе 5…200 Гц и равна 1,2… 1,4 мс. Это значит, что на средних и максимальных оборотах двигателя — а это наиболее часто используемые режимы, длительность искры практически соответствует установившимся и настоящее время требованиям.

Ощутимо изменилась и мощность, подводимая к катушке зажигания. На частоте 20 Гц при катушке Б-115 она достигает 50…52 мДж, а на 200 Гц — около 16 мДж. Расширены также пределы питающего напряжения, в которых блок работоспособен. Уверенное искрообразование при пуске двигателя обеспечивается при бортовом напряжении 3,5 В, но работоспособность блока сохраняется и при 2,5 В. На максимальной частоте искрообразование не нарушается, если питающее напряжение достигает 6 В, а длительность искры — не ниже 0,5 мс.

Указанные результаты получены главным образом за счет изменения режима работы преобразователя, особенно условий его возбуждения. Эти показатели, которые, по мнению автора, находятся на практическом пределе возможностей при использовании всего одного транзистора, обеспечены также применением ферритового магнитопровода в трансформаторе преобразователя.

Как видно из принципиальной схемы блока, показанной на рисунке выше, основные ее изменения относятся к преобразователю, т.е. генератору зарядных импульсов, питающих накопитель-конденсатор С2. Упрощена цепь запуска преобразователя, выполненного, как и прежде, по схеме однотактного стабилизированного блокинг-генератора. Функции пускового и разрядного диодов(соответственно VD3 и VD9 по прежней схеме) выполняет теперь один стабилитрон VD1. Такое решение обеспечивает более надежный запуск генератора после каждого цикла искрообразования путем значительного увеличения начального смещения на эмиттерном переходе транзистора VT1. Это не снизило тем не менее общей надежности блока, поскольку режим транзистора ни по одному из параметров не превысил допустимых значений.

Изменена и цепь зарядки конденсатора задержки С1. Теперь он после зарядки накопительного конденсатора заряжается через резистор R1 и стабилитроны VD1 и VD3. Таким образом, в стабилизации участвуют два стабилитрона, суммарным напряжением которых при их открывании и определяется уровень напряжения на накопительном конденсаторе С2. Некоторое увеличение напряжения на этом конденсаторе скомпенсировано соответствующим увеличением числа витков базовой обмотки и трансформатора. Средний уровень напряжения на накопительном конденсаторе уменьшен до 345…365 В, что повышает общую надежность блока и обеспечивает вместе с тем требуемую мощность искры.

В разрядной цепи конденсатора С1 использован стабистор VD2, позволяющий получить такую же степень перекомпенсации при уменьшении бортового напряжения, как три-четыре обычных последовательных диода. При разрядке этого конденсатора стабилитрон VD1 открыт в прямом направлении, (подобно диоду VD9 исходного блока). Конденсатор С3 обеспечивает увеличение длительности и мощности импульса, открывающего тринистор VS1. Это особенно необходимо при большой частоте искрообразования, когда средний уровень напряжения на конденсаторе С2 существенно снижается.

В блоках электронного зажигания с многократной разрядкой накопительного конденсатора на катушку зажигания длительность искры и в определенной степени ее мощность определяет качество тринистора, поскольку все периоды колебаний, кроме первого, создаются и поддерживаются только энергией накопителя. Чем меньше затраты энергии на каждое включение тринистора, тем большее число запусков будет возможно и тем большее количество энергий (и за большее время) будет передано катушке зажигания. Крайне желательно поэтому подобрать тринистор с минимальным открывающим током.
Хорошим можно считать тринистор, если блок обеспечивает начало искрообразования (с частотой 1…2 Гц) при питании блока напряжением 3 В. Удовлетворительному качеству соответствует работа при напряжении 4…5 В. С хорошим тринистором длительность искры равна 1,3…1,5 мс, при плохом — уменьшается до 1… 1,2 мс.


При этом, как это ни покажется странным, мощность искры в обоих случаях будет примерно одинаковой по причине ограниченной мощности преобразователя. В случае большей длительности конденсатор-накопитель разряжается практически полностью, начальный (он же средний) уровень напряжения на конденсаторе, задаваемый преобразователем, несколько ниже, чем в случае с меньшей длительностью. При меньшей же длительности начальный уровень более высок, но высок и остаточный уровень напряжения на конденсаторе из-за его неполной разрядки.

Таким образом, разность между начальным и конечным уровнями напряжения на накопителе в обоих случаях практически одинакова, а от нее и зависит количество вводимой в катушку зажигания энергии . И все-таки при большей длительности искры достгается лучшее дожигание горючей смеси в цилиндрах двигателя, т.е. повышается его КПД.

При нормальной работе блока формированию каждой искры соответствуют 4,5 периода колебаний в катушке зажигания. Это означает, что искра представляет собой девять знакопеременных разрядов в свече зажигания, непрерывно следующих один за другим.

Нельзя поэтому согласиться с, мнением (изложенным в) о том, что вклад третьего и тем более четвертого периодов колебаний не удается обнаружить ни при каких условиях. На самом деле каждый период вносит свой совершенно конкретный и ощутимый вклад в общую энергию искры, что подтверждают и другие публикации, например . Однако, если источник бортового напряжения включен последовательно с элементами контура (т.е. последовательно с катушкой зажигания и накопителем), сильное затухание, вносимое именно источником, а не другими элементами, действительно, не позволяет обнаружить упомянутый выше вклад. Такое включение как раз и использовано в .

В описываемом блоке источник бортового напряжения в колебательном процессе участия не принимает и упомянутых потерь, естественно, не вносит.

Один из наиболее ответственных узлов блока — трансформатор Т1. Его магнитопровод Ш15х12 изготовлен из оксифера НМ2000. Обмотка I содержит 52 витка провода ПЭВ-2 0,8; II — 90 витков провода ПЭВ-2 0,25; III — 450 витков провода ПЭВ-2 0.25.

Зазор между Ш-образными частями магнитопровода должен быть выдержан с максимально возможной точностью. Для этого при сборке между его крайними стержнями помещают, без клея по гетинаксовой (или текстолитовой) прокладке толщиной 1,2+-0,05 мм, после чего детали магнитопровода стягивают прочными нитками.
Снаружи трансформатор необходимо покрыть несколькими слоями эпоксидной смолы, нитроклея или нитроэмали.
Катушку можно выполнить на прямоугольной шпуле без щек. Первой наматывают обмотку III, в которой каждый слой отделяют от следующего тонкой изоляционной прокладкой, а завершают трехслойной прокладкой. Далее наматывают обмотку II. Обмотку I отделяют от предыдущей двумя слоями изоляции. Крайние витки каждого слоя при намотке на шпуле следует фиксировать любым нитроклеем.

Гибкие выводы катушки лучше всего оформить по окончании всей намотки. Выводить концы обмотки I и II следует в сторону диаметрально противоположную концам обмотки III, но все выводы должны быть на одном из торцов катушки. В таком же порядке располагают и гибкие выводы, которые закрепляют нитками и клеем на прокладке из электрокартона (прессшпана). Перед заливкой выводы маркируют.

Кроме КУ202Н, в блоке можно применить тринистор КУ221 с буквенными индексами А-Г. При выборе тринистора следует принять во внимание, что, как показывает опыт, КУ202Н по сравнению с КУ221 имеют в большинстве случаев меньший ток открывания, но более критичны к параметрам импульса запуска (длительности и частоте). Поэтому для случая использования тринистора из серии КУ221 номиналы элементов цепи удлинения искры необходимо скорректировать — конденсатор С3 должен иметь емкость 0,25 мкФ, а резистор R4 — сопротивление 620 Ом.

Транзистор КТ837 может быть с любыми буквенными индексами, кроме Ж, И, К, Т, У, Ф. Желательно, чтобы статический коэффициент передачи тока не был менее 40. Применение транзистора другого типа нежелательно.

Теплоотвод транзистора должен иметь полезную площадь не менее 250 кв.см. В роли теплоотвода удобно использовать металлический кожух блока или его основание, которые следует дополнить охлаждающими ребрами. Кожух должен обеспечивать и брызгозащищенность блока.

Стабилитрон VD3 также необходимо устанавливать на теплоотвод. В блоке он представляет собой две полосы размерами 60x25x2 мм, согнутые П-образно и вложенные одна в другую. Стабилитрон Д817Б можно заменить последовательной цепью из двух стабилитронов Д816В; при бортовом напряжении 14 В и частоте искрообразования 20 Гц эта пара должна обеспечивать на накопители напряжение 350…360В. Каждый из них устанавливают на небольшой теплоотвод. Стабилитроны подбирают только после выбора и установки тринистора.

Стабилитрон VD1 подборки не требует, но он обязательно должен быть в металлическом корпусе. Для увеличения общей надежности блока целесообразно этот стабилитрон снабдить небольшим теплоотводом в виде обжимки из полоски тонкого дюралюминия.

Стабистор КС119А (VD2) можно заменить тремя диодами Д223А (или другими кремниевыми диодами с импульсным прямым током не менее 0,5 А), включенными последовательно.

Большинство деталей блока смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм. Чертеж платы показан на рис.2. Плата разработана с учетом возможности монтажа деталей при различных вариантах замены.

Для блока, предназначенного работать в местностях с суровым зимним климатом, оксидный конденсатор С1 желательно использовать танталовый с рабочим напряжением не ниже 10 В. Его устанавливают вместо большой перемычки на плате, при этом точки подключения алюминиевого оксидного конденсатора (он-то и показан на плате), пригодного для работы в подавляющем большинстве климатических зон, следует замкнуть перемычкой соответствующей длины. Конденсатор С2-МБГО, МБГЧ или К73-17 на напряжение 400…600 В.

В случае выбора для блока тринистора из серии КУ221 нижнюю по рис.2 часть платы необходимо скорректировать так, как это показано на рис.3. При монтаже тринистора необходимо один из винтов его крепления изолировать от печатной дорожки общего провода.

Проверку работоспособности и тем более регулировку следует проводить именно с такой катушкой зажигания, с которой блок будет работать в дальнейшем. Следует иметь в виду, что включение блока без катушки зажигания, нагруженной запальной свечой, совершенно недопустимо. Для проверки вполне достаточно измерять пиковым вольтметром напряжение на накопительном конденсаторе С2. Таким вольтметром может служить авометр, имеющий предел постоянного напряжения 500 В. Авометр подключают к конденсатору С2 через диод Д226Б (или подобный), а зажимы авометра шунтируют конденсатором емкостью 0,1…0,5мкф, на напряжение 400…600 В.

При номинальном напряжении питания (14 В) и частоте искрообразования 20 Гц напряжение на накопителе должно находиться в пределах 345…365 В. Если напряжение меньше, то прежде всего подбирают тринистор с учетом сказанного выше. Если после подборки будет обеспечено искрообразоеание при понижении напряжения питания до 3 В, но на конденсаторе С2 при номинальном напряжении питания будет повышенное напряжение, следует подобрать стабилитрон VD3 с несколько пониженным напряжением стабилизации.

Далее проверяют блок на высшей частоте искрообраэования (200 Гц), поддерживая номинальное бортовое напряжение. Напряжение на конденсаторе С2 должно находиться в пределах 185…200 В, а потребляемый блоком ток после непрерывной работы в течение 15…20 мин не должен превышать 2,2 А. Если транзистор за это время нагреется выше 60°С при комнатной окружающей температуре, тёплоотводящую поверхность следует несколько увеличить. Конденсатор С3 и резистор R4 подборки, как правило, не требуют. Однако для отдельных экземпляров тринисторов (как того, так и другого типа) может потребоваться корректировка номиналов, если на частоте 200 Гц будет обнаружена неустойчивость в искрообраэовании. Она проявляется обычно в виде кратковременного сбоя в показаниях вольтметра, подключенного к накопителю, и хорошо заметна на слух.

В этом случае следует увеличить емкость конденсатора С3 на 0,1…0,2 мкФ, а если это не поможет, вернуться к прежнему значению и увеличить сопротивление резистора R4 на 100…200 Ом. Одна из этих мер, а иногда и обе вместе, обычно устраняют неустойчивость запуска. Заметим, что увеличение сопротивления уменьшает, а увеличение емкости увеличивает длительность искры.

Если есть возможность воспользоваться осциллографом, то полезно убедиться в нормальном течении колебательного процесса в катушке зажигания и фактической его длительности. До полного затухания должны быть хорошо, различимы 9-11 полуволн, суммарная длительность которых должна быть равна 1,3…1,5 мс на любой частоте искрообразования. Вход X осциллографа следует подключать к общей точке обмоток катушки зажигания.

Типичный вид осциллограммы показан на рис.4. Всплески посредине минусовых полуволн соответствуют единичным импульсам блокинг-генератора при изменении направления тока в катушке зажигания.

Целесообразно проверить также зависимость напряжения на накопительном конденсаторе от бортового напряжения.

Ее вид не должен заметно отличаться от показанного на рис.5.

Изготовленный блок рекомендуется устанавливать в моторном отсеке в передней, более прохладной его части. Искрогасящий конденсатор прерывателя следует отключить и соединить его вывод с соответствующим контактом розетки разъема Х1. Переход на классическое зажигание выполняют, как и в прежней конструкции, установкой вставки-замыкателя Х1.3.

В заключение отметим, что попытки получить столь же «длинную» искру с трансформатором на стальном магнитопроводе, даже из стали самого высокого качества, не приведут к успеху. Наибольшая длительность, которая может быть достигнута, — 0,8…0,85 мс. Тем не менее блок почти без изменений (сопротивление резистора R1 следует уменьшить до 6…8 Ом) работоспособен и с трансформатором на стальном магнитопроводе с указанными намоточными характеристиками, и эксплуатационный качества блока выше, чем у его прототипа .

Литература:
1. Г. Карасев. Стабилизированный блок электронного зажигания. — Радио, 1988, № 9, с. 17; 1989, №5, с.91
2. П.Гацанюк. Усовершенствованная электронная система зажигания. В сб.: «В помощь радиолюбителю», вып: 101, с. 52, — М.: ДОСААФ.
3. А. Синельников. Электроника в автомобиле. — М.:, Радио и связь, 1985, с.46.
4. Ю. Архипов. Полуавтоматический блок зажигания. — Радио, 1990, № 1, с. 31-34; №2, с. 39-42.

Достоинства электронного зажигания в двигателях внутреннего сгорания хорошо известны. Вместе с тем распространенные в настоящее время системы электронного зажигания пока недостаточно полно отвечают комплексу конструктивных и эксплуатационных требований. Системы с импульсным накоплением энергии сложны, не всегда надежны и практически недоступны для изготовления большинству автолюбителей. Простые системы с непрерывным накоплением энергии не обеспечивают стабилизации запасаемой энергии [З], а когда стабилизация достигнута - они почти так же сложны, как и импульсные системы .

Не удивительно поэтому, что опубликованная в журнале “Радио” статья Ю. Сверчкова вызвала большой интерес читателей. Хорошо продуманный, предельно простой стабилизированный блок зажигания может, без всякого преувеличения, служить хорошим примером оптимального решения в конструировании подобных устройств.

Результаты эксплуатации блока по схеме Ю. Сверчкова показали, что при общем достаточно высоком качестве его работы и высокой надежности ему присущи и существенные недостатки. Главный из них - это малая длительность искры (не более 280 мкс) и соответственно малая ее энергия (не более 5 мДж).

Этот недостаток, присущий всем конденсаторным системам зажигания с одним периодом колебаний в катушке, приводит к неустойчивой работе холодного двигателя, неполному сгоранию обогащенной смеси во время прогрева, затрудненному пуску горячего двигателя. Кроме этого, стабильность напряжения на первичной обмотке катушки зажигания в блоке Ю. Сверчкова несколько ниже, чем в лучших импульсных системах. При изменении напряжения питания от 6 до 15 В первичное напряжение изменяется от 330 до 390 В (±8 %), тогда как в сложных импульсных системах это изменение не превышает ±2 %.

С увеличением частоты искрообразования напряжение на первичной обмотке катушки зажигания уменьшается. Так, при изменении частоты от 20 до 200 Гц (частота вращения коленчатого вала 600 и 6000 мин -1 соответственно) напряжение изменяется от 390 до 325 В, что также несколько хуже, чем в импульсных блоках. Однако этот недостаток можно

практически не принимать во внимание, поскольку при частоте 200 Гц пробивное напряжение искрового промежутка свечей (из-за остаточной ионизации и других факторов) уменьшается почти вдвое.

Автор этих строк, который более 10 лет экспериментировал с различными электронными системами зажигания, поставил задачу улучшить энергетические характеристики блока Ю. Сверчкова, сохранив простоту конструкции. Решение ее оказалось возможным благодаря внутренним резервам блока, поскольку энергия накопителя использована в нем лишь наполовину.

Поставленная цель достигнута введением режима многопериодной колебательной разрядки накопительного конденсатора на катушку зажигания, приводящей к практически полной его разрядке. Сама идея такого решения не нова , но используется редко. В результате разработан усовершенствованный блок электронного зажигания с характеристиками, которыми обладают далеко не все импульсные конструкции.

При частоте искрообраэования в пределах 20...200 Гц блок обеспечивает длительность искры не менее 900 мкс. Энергия искры, выделяемая в свече зажигания при зазоре 0,9...1 мм,- не менее 12 мДж. Точность поддержания энергии в накопительном конденсаторе при изменении напряжения питания от 5,5 до 15 В и частоте искрообразования 20 Гц - не хуже ±5 %. Остальные характеристики блока не изменились.

Существенно, что увеличение длительности искрового разряда достигнуто именно продолжительным колебательным процессом разрядки накопительного конденсатора. Искра в этом случае представляет собой серию из 7-9 самостоятельных разрядов. Такой знакопеременный искровой разряд (частота около 3,5 кГц) способствует эффективному сгоранию рабочей смеси при минимальной эрозии свечей, что выгодно отличает его от простого удлинения апериодической разрядки накопителя .

Схема преобразователя блока (рис. 1) практически не изменилась. Заменен только транзистор для некоторого увеличения мощности преобразователя и облегчения теплового режима. Исключены элементы, обеспечивавшие неуправляемый многоискровой режим работы. Существенно изменены цепи коммутации энергии и цепи управления разрядкой накопительного конденсатора СЗ. Он разряжается теперь в течение трех (а на частоте ниже 20 Гц - и более) периодов собственных колебаний контура, состоящего из первичной обмотки катушки зажигания и конденсатора СЗ, Обеспечивают такой режим элементы С2, R3, R4, VD6.

Учитывая, что работа преобразователя подробно описана в , рассмотрим только процесс колебательной разрядки конденсатора СЗ. При размыкании контактов прерывателя конденсатор С4, разряжаясь через управляющий переход тринистора VS1, диод VD8 и резисторы R7, R8, открывает тринистор, который подключает заряженный конденсатор СЗ к первичной обмотке катушки зажигания. Постепенно увеличивающийся ток через обмотку по окончании первой четверти периода имеет максимальное значение, а напряжение на конденсаторе СЗ в этот момент становится равным нулю (рис. 2).

Вся энергия конденсатора (за вычетом тепловых потерь) преобразована в магнитное поле катушки зажигания, которое, стремясь сохранить значение и направление тока, начинает перезаряжать конденсатор СЗ через открытый тринистор. В результате по окончании второй четверти периода ток и магнитное поле катушки зажигания равны нулю, в конденсатор СЗ заряжен до 0,85 исходного (по напряжению) уровня в противоположной полярности. С прекращением тока и сменой полярности на конденсаторе СЗ закрывается тринистор VS1, но открывается диод VDS. Начинается очередной процесс разрядки конденсатора СЗ через первичную обмотку катушки зажигания, направление тока через которую меняется на противоположное. По окончании периода колебаний (т. е. приблизительно через 280 мкс) конденсатор СЗ оказывается заряженным в исходной полярности до напряжения, равного 0,7 начального. Это напряжение закрывает диод VDS, разрывая цепь разрядки.

В рассмотренном интервале времени малое сопротивление попеременно открывающихся элементов VD5 и VS1 шунтирует подключенную параллельно им цепь R3R4C2, вследствие чего напряжение на ее концах близко к нулю. По окончании же периода, когда тринистор и диод закрываются, напряжение конденсатора СЗ (около 250 В) через катушку зажигания прикладывается к этой цепи. Импульс напряжения, снимаемый с резистора R3, пройдя через диод VD6, вновь открывает тринистор VS1, и все процессы, описанные выше, повторяются.

Затем следует третий, а иногда (при пуске) и четвертый цикл разрядки. Процесс продолжается до тех пор, пока конденсатор С3, теряющий при каждом цикле около 50 % энергии, не разрядится почти полностью. В результате длительность искры возрастает до 900...1200 мкс, а ее энергия - до 12...16 мДж,

На рис. 2 показан примерный вид осциллограммы напряжения на первичной обмотке катушки зажигания. Для сравнения штриховой линией показана такая же осциллограмма блока Ю. Сверчкова (первые периоды колебаний на обоих осциллограммах совпадают),

Для повышения защищенности от дребезга контактов прерывателя пусковой узел пришлось несколько изменить. Постоянная времени цепи зарядки конденсатора С4 путем выбора соответствующего резистора R6 увеличена до 4 мс; увеличен также разрядный ток конденсатора (т. е. ток запуска тринистора), определяемый сопротивлением цепи резисторов R7, R8.

Блок электронного зажигания был испытан в течение трех лет на автомобиле “Жигули” и очень хорошо зарекомендовал себя. Резко повысилась устойчивость работы двигателя после пуска. Даже зимой при температуре около -30 °С пуск двигателя был легким, начинать движение можно было после прогрева в течение 5 мин. Прекратились наблюдавшиеся при использовании блока Ю. Сверчкова перебои в работе двигателя в первые минуты движения, улучшилась динамика разгона.

В трансформаторе Т1 использован магнитопровод ШЛ16Х8. Зазор 0,25 мм обеспечен тремя прессшпановыми прокладками. Обмотка I содержит 50 витков провода ПЭВ-2 0,55; II - 70 витков ПЭВ-2 0,25; III - 450 витков ПЭВ-2 0,14. В последней обмотке между всеми слоями следует проложить по одной прокладке из конденсаторной бумаги, а всю обмотку отделить от остальных одним-двумя слоями кабельной бумаги,

Готовый трансформатор покрывают 2-3 раза эпоксидной смолой или заливают его смолой полностью в пластмассовой или металлической коробке, Не следует применять Ш-образный магнитопровод, поскольку, как показывает опыт, трудно выдержать по всей толщине набора заданный зазор, а также избежать замыкания наружных пластин. Оба этих фактора, особенно второй, резко снижают мощность генератора.зарядных импульсов.

При налаживании генераторной части блока можно использовать рекомендации Ю. Сверчкова в .

Благодаря высокой надежности блок можно подключать без разъема X1 (отключение конденсатора Спр прерывателя обязательно), который предназначен для возможного аварийного перехода на батарейное зажигание, но первичная установка момента зажигания при этом будет существенно сложнее. При сохранении же разъема Х1 переход на батарейное зажигание очень прост - в гнездовую часть разъема Х1 вместо колодки блока вставляют колодку-замыкатель, у которой соединены контакты 2, 3 и 4.

Г.КАРАСЕВ, г. Ленинград

ЛИТЕРАТУРА:
1. А. Синельников. Чем различаются блоки,- За рулем. 1977, № 10. с. 17,
2. А. Синельников. Блок электронного зажигания повышенной надежности. Сб. “В помощь радиолюбителю”, вып. 73.-- М.: ДОСААФ СССР, с. 38.
3. А. Синельников. Электроника в автомобиле. - М.: Энергия, 1976.
4. А. Синельников. Электроника я автомобиле.- М.: Радио и связь, 1985.
5. Ю. Сверчков. Стабилизированный многоискровой блок зажигания. - Радио, 1982, № 5. с. 27.
6. Э. Литке. Конденсаторная система зажигания. Сб. “В помощь радиолюбителю”, вып, 78.- М.: ДОСААФ СССР, с. 35.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT Биполярный транзистор

П210Б

1 В блокнот
VS1 Тиристор & Симистор

КУ202Н

1 В блокнот
VD1, VD3, VD6-VD8 Диод

Д220

5 В блокнот
VD2 Стабилитрон

Д817Б

1 В блокнот
VD4 Диод

КД105В

1 В блокнот
VD5 Диод

КД202Р

1 В блокнот
C1 Электролитический конденсатор 30 мкФ 10 В 1 В блокнот
C2 Конденсатор 0.02 мкФ 1 В блокнот
C3 Конденсатор 1 мкФ 400 В 1 В блокнот
C4 Конденсатор 0.1 мкФ 1 В блокнот
R1 Резистор

22 Ом

1 1 Вт В блокнот
R2 Резистор

Все автолюбители знают, что для розжига топлива применяется искра на свече зажигания, которая воспламеняет топливо в цилиндре, а напряжение на свече достигает уровня 20Кв. На старых автомобилях применяются классические, системы зажигания, которые имеют серьёзные недостатки. Именно о модернизации и доработке этих схем мы и поговорим.

Емкость в этой конструкции заряжается от стабильного по амплитуде обратного выброса блокинг-генератора. Амплитуда этого выброса почти не зависит от напряжения аккумуляторной батареи и числа оборотов коленчатого вала и поэтому энергии искры всегда достаточно для воспламенения топлива.

Схема зажигания выдает потенциал на накопительном конденсаторе в диапазоне 270 - 330 Вольт при падении напряжения на аккумуляторе до 7 вольт. Предельная частота срабатывания около 300 импульсов в секунду. Потребляемый ток около двух ампер.

Схема зажигания состоит из ждущего блокинг-генератора на биполярном транзисторе, трансформатора, цепи формирования импульсов C3R5, накопительной емкости С1, генератора импульсов на тиристоре.

В начальный момент времени, когда контактные S1 замкнуты, транзистор заперт, а емкость С3 разряжена. При размыкании контакта конденсатор будет заряжаться по цепи R5, R3.

Импульс тока заряда запускает блокинг-генератор. Передний фронт импульса с вторичной обмотки трансформатора запускает тиристор КУ202, но, так как емкость С1 предварительно не была заряжена, на выходе устройства искра отсутствует. С течением времени, под действием коллекторного тока транзистора осуществляется насыщение сердечника трансформатора и поэтому блокинг-генератор вновь окажется в ждущем режиме.

При этом на коллекторном переходе формируется выброс напряжения, который трансформируется в в третьей обмотке и через диод зарядит емкость С1.

При повторном размыкании прерывателя в устройстве происходит тот же алгоритм с той лишь разницей, что открывшийся передним фронтом импульса тиристор подсоединит уже заряженную емкость к первичной обмотке катушки. Ток разряда конденсатора С1 индуцирует во вторичной обмотке высоковольтный импульс.

Диод V5 защищает базовый переход транзистора. Стабилитрон предохраняет V6 от пробоя, если блок включен без бобины либо без свечи. Конструкция нечувствительна к дребезжанию контактных пластин прерывателя S1.

Трансформатор изготавливается своими руками на магнитопроводе ШЛ16Х25. Первичная обмотка содержит 60 витков провода ПЭВ-2 1,2, вторичная 60 витков ПЭВ-2 0,31, третья 360 витков ПЭВ-2 0,31.

Мощность искры в этой конструкции зависит от температуры биполярного транзистора VT2, которая на горячем двигателе снижается, а на холодном наоборот, тем самым, существенно облегчая запуск. В момент размыкания и замыкании контактов прерывателя импульс следует через конденсатор С1, кратковременно отпирая оба транзистора. При запирании VT2 появляется искра.

Емкость С2 сглаживает импульсный пик. Сопротивления R6 и R5 ограничивают максимум напряжения на коллекторном переходе VT2. При разомкнутых контактах оба транзистора закрыты, при длительно замкнутых контактах ток идущий через емкость С1 постепенно снижается. Транзисторы плавно закрываются, защищая катушку зажигания от перегрева. Номинал резистора R6 подбирается для конкретной катушки(на схеме он показан для катушки Б115), для Б116 R6 = 11 кОм.

Как видите на рисунке выше печатная плата устанавливается поверх радиатора. Биполярный транзистор VT2 через термопасту и диэлектрическую прокладку установлен на радиатор.

Контактно транзисторная схема зажигания

Эта конструкция позволяет формировать искру с большой длительностью, поэтому процесс сгорания топлива в автомобиле становится оптимальным.

Схема зажигания состоит из триггера Шмитта на транзисторах V1 и V2, развязывающих усилителей V3, V4 и электронного транзисторного ключа V5, коммутирующего ток в первичной обмотке катушки зажигания.

Триггер Шмитта формирует коммутирующие импульсы с крутым фронтом и спадом при замыкании или размыкании контактов прерывателя. Поэтому в первичной обмотке катушки зажигания увеличивается скорость прерывания тока и возрастает амплитуда высоковольтного напряжения на выходе вторичной обмотки.

В результате улучшаются условия формирования искры в свече, что способствует процессу улучшения запуска автомобильного двигателя и более полному сгоранию горючей смеси.


Транзисторы VI, V2, V3 - КТ312В, V4 - КТ608, V5 - КТ809А. Емкость С2 - с рабочим напряжением не ниже 400 В. Катушка типа Б 115, применяемая в легковых автомобилях.

Печатную плату изготовил в соответствии с рисунком по .

В этой системе энергия, расходуемая на искрообразование, копится в магнитном поле катушки зажигания. Система может быть смонтирована на любом карбюраторном двигателе с бортовой сетью автомобиля +12 В. Устройство состоит из транзисторного коммутатора, построеного на мощном германиевом транзисторе, стабилитроне, резисторах R1 и R2, отдельных добавочных сопротивлениях R3 и R4, двухобмоточной катушки зажигания и контактов прерывателя.

Мощный германивый транзистор Т1 работает в ключевом режиме с нагрузкой в коллекторной цепи, в роли которой служит первичная обмотка катушки зажигания. При включенном замке зажигания и разомкнутых контактах прерывателя транзистор заперт, так как ток в базовой цепи стремится нулю.

Во время замыкания контактов прерывателя в базовой цепи германиевого транзистора начинает течь ток величиной 0,5- 0,7 А, задаваемый сопротивлением R1, R2. Когда транзистор полностью отпирается, внутреннее сопротивление его резко снижается, и по первичной цепи катушки течет ток, нарастающий по экспоненте. Процесс нарастания тока практически не отличается от аналогичного процесса классической системы зажигания.

При очередном размыкании контактов прерывателя движение базового тока притормаживается, и транзистор закрывается, что приводит к резкому падению номинала тока через первичную обмотку. Во вторичной обмотке катушки зажигания генерируется высокое напряжение U 2макс которое через распределитель поступает на свечу зажигания. Затем процесс повторяется.

параллельно с появлением высокого напряжения на вторичной обмотке в первичной обмотке катушки индуцируется ЭДС самоиндукции, которая ограничивается стабилитроном.

Сопротивление R1 исключает обрыв базовой цепи транзистора при разомкнутых контактах прерывателя. Сопротивление R4 в эмиттерной цепь является токовым элементом обратной связи, снижая время переключения и улучшающим ТКС транзистора Т1. Сопротивление R3 (совместно с R4) ограничивает ток протекающий через первичную цепь катушки зажигания.

Д.Соснин

На легковых автомобилях, оборудованных бензиновым двигателем внутреннего сгорания, применяются различные системы электроискрового зажигания: контактные, контактно-транзисторные, бесконтактно-транзисторные, электронно-цифровые, микропроцессорные.

1. Транзисторные системы зажигания

Транзисторные системы зажигания принято подразделять на две группы:

Контактно-транзисторные (КТСЗ) и бесконтактно-транзисторные (БТСЗ). В контактно-транзисторной системе зажигания контактная пара прерывателя в первичной цепи катушки зажигания отсутствует и заменена транзисторным ключом КТ. Но сам транзисторный ключ управляется по базе контактной парой механического прерывателя К прежней конструкции. Это позволило уменьшить ток разрыва в контактной паре и за счет усиления в транзисторе увеличить ток разрыва в индуктивном накопителе (в первичной обмотке катушки зажигания). При этом коэффициент запаса по вторичному (выходному) напряжению увеличился. Эксплуатационная надежность системы зажигания стала несколько выше. Наряду с контактно-транзисторными системами зажигания были разработаны также и контактно-тиристорные системы с емкостным накопителем, которые не нашли широкого практического применения.

Бесконтактно-транзисторная система зажигания (БТСЗ) - это первая система с чисто электронным устройством управления первичным током катушки зажигания и с бесконтактным электроимпульсным датчиком момента зажигания, который, как и контактная пара в классическом прерывателе-распределителе, расположен на подвижной площадке приводного валика механического высоковольтного распределителя. Положение подвижной площадки относительно оси приводного валика (угол разворота) может регулироваться аппаратами опережения зажигания (центробежным и вакуумным). Подвижная площадка и установленный на ней активатор бесконтактного датчика представляют собой электромеханическое устройство управления моментом зажигания. Такое устройство управления в совокупности с высоковольтным распределителем образуют так называемый датчик-распределитель .

Электронное устройство управления первичным током в БТСЗ конструктивно выполнено в виде отдельного блока, который называется коммутатором. По выходу коммутатор соединен с катушкой зажигания, а по входу - управляется электроимпульсным входным датчиком на распределителе.

Таким образом, бесконтактно-транзисторная система зажигания (рис. 1) -

Это совокупность электронного коммутатора К, датчика-распределителя РР, катушки зажигания КЗ и традиционной выходной исполнительной периферии: высоковольтных проводов ВВП и свечей зажигания.

Бесконтактно-транзисторные системы зажигания (БТСЗ) стали устанавливаться на легковых автомобилях в конце 60-х годов и с тех пор постоянно совершенствовались.

В качестве бесконтактных входных датчиков с механическим приводом от распредвала ДВС были испытаны магнитоэлектрические, индукционные, электромагнитные генераторные, параметрические, оптоэлектронные и прочие преобразователи механического вращения в электрический сигнал (рис. 2).

Бесконтактный датчик выполняет в системе зажигания следующие функции: задает установочный угол* опережения зажигания; управляет моментом зажигания при изменении частоты вращения и нагрузки двигателя; определяет тактность работы ДВС. По совокупности перечисленных функций бесконтактный датчик выдает на вход коммутатора оптимальную величину

* Установочным называется угол опережения зажигания на предельно низких (холостых) оборотах двигателя, когда центробежный и вакуумный регуляторы еще не работают. текущего значения угла опережения зажигания для различных режимов работы двигателя.

Вначале, как более простой и достаточно надежный, широкое практическое применение получил магнитоэлектрический датчик. Но с разработкой активатора на эффекте Холла последний стал основным элементом для всех последующих бесконтактных датчиков электронных систем зажигания.

Не менее значительной модернизации подвергались электронные коммутаторы БТСЗ. От тиристорных коммутаторов быстро отказались, так как система зажигания с емкостным накопителем выдает на свечи очень короткий импульс высокого напряжения (не более 250...300 мкс), что не приемлемо для большинства современных бензиновых автомобильных двигателей.

Первые простейшие транзисторные коммутаторы работали без ограничения амплитуды первичного тока, т.е. в режиме постоянной скважности импульсов зарядного тока для индуктивного накопителя (отечественный коммутатор 13.3734).

В системах зажигания с такими коммутаторами амплитуда высоковольтного импульса на вторичной обмотке катушки зажигания, как и в контактной системе, зависит от частоты вращения двигателя, а также от напряжения в бортсети автомобиля.

На смену коммутаторам с постоянной скважностью (КПС) пришли коммутаторы с нормируемой скважностью (КНС), в которых ток заряда индуктивного накопителя поддерживается в заданных пределах ограничения путем управляемого насыщения выходного транзистора. Это защищает выходной транзистор коммутатора от перегрузки по току, а также стабилизирует амплитуду тока заряда при изменении напряжения в бортсети. Выходное напряжение U2 при этом также стабилизируется.
Но ограничение тока мощного транзистора насыщением приводит к значительному выделению тепловой энергии на коллекторно-эмиттерном переходе и, как следствие, к низкой функциональной надежности системы зажигания в целом.

Исключить этот недостаток в коммутаторах с нормируемой скважностью можно введением в схему электронного регулятора времени накопления энергии (времени протекания тока заряда через индуктивный накопитель). Так появились коммутаторы с программным регулятором времени накопления (коммутатор 36.3734), а вслед за ними и более совершенные коммутаторы с адаптивным регулированием (коммутатор 3620.3734). Последние, помимо основной функции регулирования времени, обеспечивают более высокую точность поддержания параметров тока заряда при воздействии на систему зажигания различных дестабилизирующих факторов (неустойчивая работа двигателя, окружающая среда, старение и уход номиналов радиоэлементов и пр.).

Электронные коммутаторы БТСЗ исключительно разнообразны не только по схемотехническому, но и по технологическому исполнению. Электронные схемы коммутаторов,первоначально аналоговые и на дискретных радиоэлементах, были вытеснены интегральными микросхемами с цифровым принципом действия. Стали появляться коммутаторы на так называемых заказных (специально разработанных для АСЗ) больших интегральных и монокристальных схемах.

Известно более 60-ти разновидностей бесконтактных систем зажигания с электронными коммутаторами, серийно выпускаемых за рубежом. Из отечественных транзисторных коммутаторов наиболее распространены одноканальные 36.3734 и 3620.3734, а также двухканальный 6420.3734 .

В качестве примера схемной реализации бесконтактно-транзисторной системы зажигания рассмотрим один из вариантов ее принципиальной электрической схемы (рис. 3).


Выходной каскад ВК, помимо традиционной катушки зажигания и транзисторного ключа VT3, содержит ряд дополнительных элементов. VD1 - диод для защиты транзисторного ключа VT3 от обратного прохождения тока (от инверсного включения) во время емкостной фазы разряда, когда имеет место обратная полу волна напряжения в первичной обмотке катушки зажигания (инверсное включение VT3 образуется и при случайном обратном включении аккумуляторной батареи). VD2 - стабилизирующий диод для ограничения величины падения напряжения на участке эмиттер-коллектор закрытого (разомкнутого) транзистора VT3 (защита от перенапряжения). Конденсатор С1 с первичной обмоткой катушки зажигания образует последовательный колебательный контур ударного возбуждения, что увеличивает скорость нарастания выходного напряжения системы зажигания. Резистор R3 ограничивает ток разряда конденсатора С1 через открытый (замкнутый) ключ VT3. Для того чтобы ключ VT3 работал стабильно, т.е. при включении и выключении обеспечивал крутые фронты и постоянство амплитуды импульса первичного тока в катушке зажигания, управляющий (базовый) импульс тока транзистора VT3 должен быть с крутыми фронтами и достаточно большим по амплитуде для глубокого насыщения транзистора. На формирование управляющего импульса тока работает предварительный усилитель-ограничитель на транзисторе VT1 и стабилизирующий транзистор обратной связи VT2.

Перечисленные элементы составляют электрическую схему коммутатора ТСЗ.

Датчик-распределитель содержит механическое устройство управления моментом зажигания, в кото рое входят магнитная система М датчика Холла с индукцией поля В, активатор ЭХ датчика Холла, усилительограничитель УО, триггер Шмитта ТШ, разделительный транзистор VT и стабилизатор напряжения СТ.

В датчик-распределитель входят также центробежный (ЦБР) и вакуумный (ВР) регуляторы, магнитный атенюатор А датчика Холла и собственно сам ротационный высоковольтный распределитель РР. Следует отметить, что электронный коммутатор в БТСЗ является лишь формирователем формы импульса тока в первичной обмотке катушки зажигания, а значит и скорости нарастания вторичного напряжения но к формированию момента зажигания коммутатор прямого отношения не имеет. Момент зажигания в БСЗ, как и в контактных системах, формируется электромеханическим устройством управления - бесконтактным датчиком на распределителе. Это обстоятельство является принципиальным недостатком всех бесконтактно-электронных систем зажигания. Второй недостаток - наличие в системе ротационного высоковольтного распределителя. Дальнейшее совершенствование автомобильных систем зажигания шло по пути устранения этих недостатков.

2. Электронные и микропроцессорные системы зажигания

Рассмотренные выше системы зажигания (КТСЗ, БТСЗ) в настоящее время имеют ограниченное применение, а на импортных легковых автомобилях высокого потребительского класса, начиная с середины 90-х годов, вообще не используются. Им на смену пришли системы зажигания четвертого поколения - это системы с электронно-вычислительными устройствами управления и без высоковольтного распределителя энергии по свечам в выходном каскаде. Такие системы принято подразделять на электронно-вычислительные или просто на электронные (ЭСЗ) и микропроцессорные (МСЗ).

Электронные и микропроцессорные системы зажигания имеют три принципиальных отличия от предшествующих систем:

1. Их устройства управления (УУ) являются электронно-вычислительными блоками дискретного принципа действия, выполнены с применением микроэлектронной технологии (на универсальных или на больших интегральных микросхемах) и предназначены для автоматического управления моментом зажигания. Эти устройства называются контроллерами.

2. Применение микроэлектронной технологии, помимо получения преимуществ по надежности, позволяет значительно расширить функции электронного управления. Стало возможным внедрение в автомобильную систему зажигания бортовой самодиагностики и принципов схемотехнического резервирования.

3. Выходные каскады этих систем в подавляющем большинстве случаев многоканальные и, как следствие, не содержат высоковольтного распределителя зажигания.

Электронные и микропроцессорные системы зажигания отличаются друг от друга способами формирования основного сигнала зажигания, т.е. того сигнала, который от ЭБУ подается на спусковое устройство накопителя.

В ЭСЗ основной сигнал зажигания формируется с применением время-импульсного способа преобразования информации от входных датчиков. Это когда контролируемый процесс задается временем его протекания, с последующим преобразованием времени в длительность электрического импульса. Таким образом, в ЭСЗ контроллер содержит электронный хронометр и управляется аналоговыми сигналами. Компонентный состав современной ЭСЗ показан на рис. 4.

В МСЗ, структурная схема которой показана на рис. 5, для формирования сигнала зажигания применяется число-импульсное преобразование, при котором параметр процесса задается не временем протекания, а непосредственно числом электрических импульсов.


Функции электронного вычислителя здесь выполняет число-импульсный микропроцессор, который работает от электрических импульсов, стабилизированных по амплитуде и длительности (от цифровых сигналов). Поэтому между микропроцессором и входными датчиками в ЭБУ МСЗ устанавливаются число-импульсные преобразователи аналоговых сигналов в цифровые (ЧИПы).

В отличие от электронной, микропроцессорная система зажигания работает по заранее заданной для данного двигателя внутреннего сгорания программе управления. Поэтому в вычислителе микропроцессорной системы зажигания имеется электронная память (постоянная и оперативная).

Программа управления для конкретной конструкции двигателя определяется экспериментально, в процессе его разработки. На испытательном стенде имитируются все возможные режимы двигателя при всех возможных условиях его работы. Для каждой экспериментальной точки подбирается и регистрируется оптимальный угол опережения зажигания. Получается набор многочисленных значений угла для момента зажигания, каждое из которых отвечает строго определенной совокупности сигналов от входных датчиков. Графическое изображение такого множества представляет собой трехмерную характеристику зажигания, которая в виде матрицы показана на рис. 6.

Координаты трехмерной характеристики "зашиваются" в постоянную память микропроцессора и в дальнейшем служат опорной информацией для определения угла опережения зажигания в реальных условиях эксплуатации двигателя на автомобиле. Изменение опорного (взятого из памяти) угла 8 опережения зажигания осуществляется автоматически. Увеличение угла 8 происходит: при повышении оборотов, при уменьшении нагрузки и при понижении температуры ДВС. Уменьшение угла 8 имеет место при увеличении нагрузки, при падении оборотов и при повышении температуры ДВС.

Если в МСЗ помимо основных датчиков используются дополнительные (например, датчик детонации в цилиндрах ДВС), то в микропроцессоре осуществляется коррекция опорного значения угла опережения зажигания по сигналам этих датчиков. При этом корректировка производится по каждому цилиндру в отдельности.

Электронные блоки управления для ЭСЗ и МСЗ, помимо функциональных и схемотехнических, имеют и принципиальные конструктивные различия.

В ЭСЗ блок управления является самостоятельным конструктивным узлом и называется контроллером (рис. 7).

На входы контроллера подаются сигналы от входных датчиков системы зажигания, а по выходу - контроллер работает на электронный коммутатор выходного каскада (см. рис. 4). Все электронные схемы контроллера низкоуровневые (потенциальные), что позволяет включать их в состав других бортовых электронных блоков управления (например, в ЭБУ системы впрыска топлива).

В МСЗ все функции управления интегрированы в центральный бортовой компьютер автомобиля и персональный блок управления для системы зажигания может отсутствовать. Функции входных датчиков МСЗ выполняют универсальные датчики комплексной системы автоматического управления двигателем. Основной сигнал зажигания подается на электронный коммутатор выходного каскада МСЗ непосредственно от центрального бортового компьютера.

Несмотря на значительные различия электронных и микропроцессорных систем зажигания, по устройствам управления выходные каскады этих систем имеют идентичное схемотехническое и конструктивное исполнение, при котором каждая свеча зажигания на многоцилиндровом ДВС получает энергию для искрообразования по отдельному каналу. Такое распределение называется статическим или многоканальным.

Что это дает автомобильной системе зажигания?

Надо вспомнить, что кроме обычных недостатков механического переключателя (низкая надежность и малая наработка на отказ вращающихся и трущихся частей) классический распределитель зажигания имеет и тот, что в нем реализуется коммутация высоковольтной энергии через электрическую искру. Это, помимо дополнительных потерь энергии, приводит к неравномерному выгоранию контактов в изоляционной крышке распределителя и, как следствие, к явлению разброса искр по цилиндрам и к низкой функциональной надежности системы зажигания. Разброс искр между выводами даже исправного механического распределителя может достигать 2...3 угловых градусов по повороту коленвала ДВС.

Ясно, что в электронных и особенно в микропроцессорных системах зажигания, высоконадежных и высокоточных в функциональном отношении, формирование момента зажигания в которых реализуется с точностью 0,3...0,5° для каждого цилиндра в отдельности, применение высоковольтного механического распределителя совершенно недопустимо. Здесь приемлемы электронные способы переключения каналов на низкопотенциальном уровне непосредственно в электронном блоке управления с дальнейшим статическим разделением каналов по высокому напряжению на многовыводных или индивидуальных катушках зажигания. Это неизбежно приводит к многоканальности выходного каскада системы зажигания.

3. Выходные каскады с многовыводными катушками зажигания

Реализация многоканального распределения энергии может быть осуществлена в системах зажигания несколькими способами. Наиболее простой из них - применение двухвыводного высоковольтного выходного трансформатора или двухвыводной катушки зажигания в выходном каскаде. Такой способ разделения каналов приемлем для реализации в системе зажигания с любым типом накопителя.

Откуда пришла такая идея? Известно, что в системе зажигания, на выходе которой установлен высоковольтный распределитель, во время разряда накопителя имеют место две искры: одна основная (рабочая) в свече зажигания и другая вспомогательная - между бегунком распределителя и контактом одного из его свечных выводов. Вторичная обмотка выходного трансформатора (катушки зажигания) высоковольтным выводом соединена с центральным бегунком распределителя, а другой вывод обмотки является нулевым, так как во время разряда накопителя соединяется с "массой" автомобиля (см. рис. 3, ). Энергия вспомогательной искры в распределителе тратится бесполезно, и эту искру стремятся всячески подавить. Отсюда ясно, что вспомогательную искру из-под крышки распределителя можно перенести во вторую свечу зажигания, соединив ее с первой через массу головки блока цилиндров последовательно. Для этого достаточно исключить распределитель из выходного каскада, отсоединить от массы автомобиля заземляемый вывод катушки зажигания и подключить к нему вторую электроискровую свечу (рис. 8).

При одновременном искрообразовании в двух свечах зажигания одна искра является высоковольтной (12...20 кВ) и воспламеняет топливовоздушную смесь в конце такта сжатия (рабочая искра). При этом другая искра низковольтная (5...7 кВ), холостая. Явление перераспределения высокого напряжения от общей вторичной обмотки между искровыми промежутками в двух свечах зажигания есть следствие глубоких различий условий, при которых происходит искрообразование. В конце такта сжатия незадолго до появления рабочей искры температура топливовоздушного заряда еще недостаточно высокая (200...300°С), а давление, наоборот - значительное (10...12 атм). В таких условиях пробивное напряжение между электродами свечи - максимально. В конце такта выпуска, когда имеет место искрообразование в среде отработавших газов, пробивное напряжение минимально, так как температура выхлопных газов высокая (800...1000°С), а давление низкое (2...3 атм). Таким образом, при статическом распределении высокого напряжения с помощью двухвыводной катушки зажигания (на двух последовательно соединенных свечах - одновременно) почти вся энергия высоковольтного электроискрового разряда приходится на рабочую искру.

Впервые двухвыводная катушка была применена в контактной батарейной системе зажигания для двухцилиндрового 4-х тактного двигателя. Примером может служить система зажигания для двигателя польского автомобиля ФИАТ-126Р (рис. 9). Аналогичная по принципу действия система зажигания установлена на отечественном автомобиле ОКА (с электронным управлением).

Если в ДВС четыре цилиндра, потребуется две двухвыводных катушки зажигания и два раздельных энергетических канала коммутации в выходном каскаде (см. рис. 5). На рис. 10 приведена диаграмма последовательности искрообразования в цилиндрах 4-х цилиндрового четырехтактного двигателя, оснащенного системой зажигания с двумя двухвы-водными катушками зажигания. Для шестицилиндрового двигателя потребуется три двухвыводных катушки зажигания и три энергетических канала.


В настоящее время разработан ряд автомобильных систем зажигания, в которых две двухвыводных катушки зажигания собираются на общем Ш-образном магнитопроводе и тем самым образуется одна 4-выводная катушка зажигания (например для автомобиля ВАЗ-2110). Такая катушка имеет две первичных и две вторичных обмотки и управляется от двухканального коммутатора. Четырехвыводная катушка зажигания может иметь и одну вторичную двухвыводную обмотку при двух первичных. Вторичная обмотка такой катушки дооборудована четырьмя высоковольтными диодами - по два на каждый высоковольтный вывод .

Недостатком любой системы зажигания с двухвыводными катушками является то, что в одной свече искра развивается от центрального электрода к массовому (боковому), а во второй свече - в обратном направлении (см. рис. 8). Так как центральный электрод заострен и всегда значительно горячее бокового, то истечение носителей заряда с его острия при искрообразовании требует затраты меньшего количества энергии, чем при истечении с бокового электрода (на центральном электроде начинает проявляться термоэлектронная эмиссия). Это приводит к тому, что пробивное напряжение на свече, работающей в прямом направлении, становится несколько ниже (на 1,5.2 кВ), чем на свече с обратным включением полярности. Для современных электронных и микропроцессорных систем зажигания с большим коэффициентом запаса по вторичному напряжению и с управляемым временем накопления энергии это не имеет принципиального значения.

4. Выходные каскады с индивидуальным статическим распределением

В современных электронных и микропроцессорных системах зажигания широко используются выходные каскады с индивидуальными катушками зажигания для каждой свечи в отдельности. Примером может служить система зажигания фирмы BOSCH, интегрированная в электронную систему автоматического управления (ЭСАУ) двигателем, которая известна под названием Motronic.

На рис. 11 показана функциональная схема ЭСАУ Motronic М-3,2,

Которая устанавливается на четырехцилиндровых двигателях автомобилей AUDI-A4 (выпуск после 1995 года).

В контроллере J220 имеется микропроцессор с блоком памяти, в котором хранится трехмерная характеристика зажигания (см. рис. 6). По этой характеристике, а также по сигналам датчика ДО G-28 (датчик частоты вращения двигателя) и датчика ДН G-69 (датчик нагрузки двигателя) устанавливается начальный угол Q(кю) = F(n) опережения зажигания. Далее по сигналам датчиков ДХ G-40, ДТ G-62 и ДД G-66 в цифровом микропроцессоре производится вычисление текущего (необходимого для данного режима работы ДВС) значения угла опережения зажигания, который с помощью электронной схемы переключения каналов подается в виде основного импульса S зажигания в соответствующий канал электронного коммутатора К-122. К этому времени в этом канале индуктивный накопитель N находится в заряженном (от бортсети +12 В) состоянии и по сигналу S разряжается на соответствующую свечу зажигания. Через 180° поворота коленвала описанные процессы будут иметь место в следующем (по порядку работы двигателя) канале коммутатора.

Основные преимущества системы зажигания, интегрированной в ЭСАУ Motronic, состоят в следующем:

- индивидуальное статическое распределение высокого напряжения по свечам зажигания;
- катушки зажигания с заземленной вторичной обмоткой;
- все входные датчики (датчик Холла, датчик частоты вращения ДВС, датчик температуры ДВС, датчики дроссельной заслонки, датчик детонации) - это формирователи электрических сигналов из неэлектрических воздействий бесконтактного принципа действия. Аналоговые сигналы от этих датчиков преобразуются в контроллере в цифровые сигналы;
- селективная коррекция угла опережения зажигания по детонации (в каждом цилиндре в отдельности);
- отключение цилиндров ДВС при перебоях в искрообразовании (защита дорогостоящих компонентов - кислородного датчика и каталитического газонейтрализатора экологической системы автомобиля от повреждений);
- наличие в контроллере функций самодиагностики и резервирования.

5. Выходной каскад с управляемым трансформатором зажигания

Известны попытки применить в многоканальном выходном каскаде автомобильной системы зажигания высоковольтный трансформатор с насыщающимися сердечниками.
Если магнитопровод трансформатора ввести в режим насыщения, то его коэффициент трансформации резко падает и энергия из первичной обмотки во вторичную не трансформируется.

Электрическая схема выходного каскада с трансформатором насыщения показана на рис. 12.

Выходной трансформатор имеет два магнитопровода - М1 и М2, охваченных общей первичной обмоткой Каждый магнитопровод оснащен отдельной обмоткой управления Wв и Wв") и отдельной двухвыводной вторичной обмоткой (W2" и W2""). Когда по управляющей обмотке Wв" протекает ток, достаточный для насыщения сердечника М1, а обмотка Wв" обесточена, то высокое напряжение будет наводиться только во вторичной обмотке W2". Если обесточить управляющую обмотку Wв" и пропустить ток насыщения по обмотке Wв", то насытится сердечник М2 и высокое напряжение будет трансформировано только в обмотку W2"".

Система зажигания с трансформатором насыщения обладает высокой надежностью, малыми габаритами и весом, но ее промышленный выпуск пока не реализован из-за значительных технических трудностей изготовления (для трансформатора насыщения требуются тороидальные сердечники из высококачественного пермалоя. Намотка многовитковых обмоток на такие сердечники крайне затруднена).

6. Высоковольтные провода

В системах зажиганиях с высоковольтным механическим распределителем длина высоковольтных проводов всегда значительна (20...60 см). И так как по проводам в момент электроискрового разряда в свечах протекает высокочастотный ток высокого напряжения, то длинные провода излучают радиопомехи. Источниками радиопомех являются также свечи зажигания.

Есть три способа подавления радиопомех от АСЗ: экранизация высоковольтных проводов, свечей, катушки зажигания и высоковольтного распределителя; введение в центральный токовод высоковольтного провода распределенной индуктивности и распределенного сопротивления; установка помехоподавительного резистора непосредственно в изолятор свечи зажигания.

Экранизация требует увеличения запаса по вторичному напряжению и делает выходной каскад АСЗ громоздким. Высоковольтный провод с распределенными параметрами имеет недостаточно высокую конструктивную надежность, сложную технологию изготовления и высокую стоимость.

В современных системах зажигания применяют свечи с помехоподавительным резистором 4...10 кОм, а длину высоковольтных проводов стремятся свести к минимуму. Последнее становится возможным благодаря применению индивидуальных катушек зажигания, установленных непосредственно на свечах (см. рис. 11).

Высоковольтные провода подразделяют на низкоомные (до 0,5 Ом/м - в устаревших конструкциях проводов) и высокоомные (1...10 кОм/м). Провода маркируются двумя способами: цветом и текстовой надписью вдоль провода.

Отечественные провода светло-коричневой или пестрой расцветки - низкоомные. Провода красного или розового цвета ПВВП-8 обладают распределенным сопротивлением 2000+200 Ом/м; синего цвета ПВППВ-40 - 2550±250 Ом/м. На высоковольтных проводах импортного производства электрические параметры чаще обозначаются текстом вдоль провода. Содержание текста можно расшифровать по фирменному каталогу.

Любой из трех указанных способов подавления радиопомех приводит к некоторому падению высоковольтного выходного напряжения системы зажигания, что иногда сказывается при пуске холодного двигателя в слякотную зимнюю погоду, когда провода покрываются тонким инеем. Чтобы устранить этот недостаток, в современных микропроцессорных системах зажигания стали применять грязевлагозащиту высоковольтных проводов и свечей зажигания (укрытие проводов в изоляционную трубку или под пластмассовую крышку вместе со свечами).

* В заключение следует отметить, что автомобили с центральным бортовым компьютером (ЦБК) - пока редкость. Но перспектива очевидна. В недалеком будущем ЦБК станет единым электронным блоком управления, общим для всех функциональных систем на борту автомобиля, таких как: впрыск топлива, электроискровое зажигание, антиблокировка тормозов, управление дифференциалами ведущих колес, антипробуксовка колес и т.д. и т.п. Но даже при полной интеграции функций управления в центральный бортовой компьютер принципы построения электронных схем для электроискровых систем зажигания надолго останутся такими же, как и в современных микропроцессорных системах.

Литература

1. Д.Соснин. Современные автомобильные системы зажигания. Ремонт&Сервис, №10, 1999 г., с. 45-47
2. Д.Соснин, А.Фещенко. Автомобильные катушки зажигания. Ремонт&Сервис, №9, 1999 г., с. 46-53
3. В.Е.Ютт. Электрооборудование автомобилей. М. Транспорт. 1995 г. Продолжение следует

Общеизвестно, что воспламенение топлива в двигателях внутреннего сгорания происходит благодаря искре от свечи зажигания, напряжение которого может достигать 20 Кв (если свеча полностью исправна).

На некоторых двигателях, для полноценной его работы иногда необходима энергия значительно больше, чем могут дать 20 Кв. Для решения данной проблемы и создана специальная электронная система зажигания. В российских отечественных автомашинах применяются обычные системы зажигания. Но все они имеют очень большие минусы.

Когда авто стоит на холостом ходу, в прерывателе, а иемнно между контактами появляется дуговой разряд, который поглощает большую часть энергии. При достаточно больших оборотах вторичное напряжение на катушке уменьшается из-за дребезга этих контактов. В результате чего это приводит к плохой аккумуляции энергии для образования искры зажигания. Из-за чего значительно снижается КПД двигателя автомобиля, увеличивается объем CO2 в выхлопной системе, топливо практически полностью не расходуется, автомашина прожирает топливо просто так.

Большим минусом старых систем зажигания является быстрота износа контактов прерывателя. Обратной же стороной этой медали является то, что эти системы с многоискровой механической распределителем, его называют также «Трамблер»ом, простота, которая обеспечивается 2-ной функцией механизма распределителя.

Для того чтобы повысить вторичное напряжение, которое генерируется такой системой, можно воспользовавшись приборами, на основе полупроводников, которые будут работать в качестве ключей управления. Именно они будут прерывать ток в первичной обмотке катушки. В качестве таких ключей сегодня используются транзисторы, которые генерируют токи до десяти Ампер без всяких повреждений и искр. Существуют экземпляры, построенные на базе тиристоров, но из-за своей нестабильности широкого применения они не нашли.


Одним из вариантов модернизации БСЗ – переделка в контактно-транзисторную систему зажигания (КТСЗ).


На схеме проиллюстрировано устройство КТСЗ.

Данное устройство генерирует искру с достаточно большой длительностью. И благодаря чему сгорание топлива становится оптимальным. По схеме можно разобрать, что система построена на основе так называемого триггера Шмитта. Собран он из транзисторов V1 и V2, усилителя V3, V4 и ключа V5. Здесь ключ выполняет роль коммутатора тока на обмотке катушки.


Триггер предназначен для генерации импульсов с достаточно широким спадом и фронтов при замыкании контактов в прерывателе. В результате чего на первичной обмотке увеличивается быстрота прерывания тока, что в свою очередь намного увеличивает амплитуду напряжения на вторичной обмотке.

Это увеличивает шансы для возникновения более мощной искры, которая способствует улучшению запуска мотора и полному результативному расходу топлива.

В сборке были использованы:
Транзисторы VI, V2, V3 — KT312B, V4 — KT608, V5 - KT809A, C4106.
Конденсатор – С2 (от 400 Вольт)
Катушка B115.

Случайные статьи

Вверх