Активный трехполосный фильтр на базе NM2116. Электрические пассивные фильтры Фильтр на высокочастотный динамик

Разделительные фильтры с плоской АЧХ обладают рядом преимуществ перед фильтрами других типов, и являются наиболее употребляемыми в настоящее время в АС класса HI-FI. Поэтому в методике расчета будет рассмотрен только этот тип фильтров. Суть расчета состоит в том, что сначала разделительные фильтры рассчитываются из условия активной нагрузки и источника напряжения с бесконечно малым выходным сопротивлением (что справедливо для современных усилителей звуковой частоты). Затем принимаются меры, направленные на снижение влияния амплитудно-частотных и фазочастотных искажений громкоговорителей и комплексного характера их входного сопротивления на характеристики фильтров.

Расчет разделительных фильтров начинается с определения их порядка и нахождения параметров элементов лестничного фильтра прототипа нижних частот.

Фильтром-прототипом называется лестничный фильтр нижних частот, значения элементов которого нормированы относительно единичной частоты среза и единичной активной нагрузки. Рассчитав элементы фильтра нижних частот определенного порядка при реальной частоте и реальном значении сопротивления нагрузки, можно путем применения преобразования частоты определить схему и рассчитать значения элементов фильтра верхних частот и полосового фильтра соответствующего порядка. Нормированные значения элементов фильтра-прототипа, работающего от источника напряжения, определяются путем разложения в цепную дробь его выходной проводимости. Нормированные значения элементов фильтров-прототипов для расчета разделительных фильтров «всепропускающего типа с плоской АЧХ» 1…6-го порядка сведены в таблицу:

Порядок фильтра Значение нормированных параметров значения z
1 2 3 4 5 6
1 1,0
2 2,0 0,5
3 1,5 1,33 0,5
4 1,88 1,59 0,94 0,35
5 1,54 1,69 1,38 0,89 0,31
6 1,8 1,85 1,47 1,12 0,73 0,5

На рис.1 представлена схема фильтра-прототипа шестого порядка. Схемы фильтров прототипов меньших порядков образуются путем отбрасывания соответствующих элементов – α (начиная с больших) – например, фильтр-прототип 1-го порядка состоит из одной индуктивности α 1 и нагрузки R н .

Рис. 1. Схема односторонне нагруженного фильтра-прототипа нижних частот 6-го порядка

Значение реальных параметров элементов, соответствующих выбранному порядку разделительных фильтров, сопротивлению нагрузки R н (Ом) и частоте среза (разделения) f d (Гц) рассчитываются следующим образом:

а) для фильтра нижних частот:

каждый элемент α -индуктивность фильтра-прототипа переводится в реальную индуктивность (Гн), рассчитываемую по формуле:

L=αR н / 2πf d

каждый элемент α -емкость фильтра-прототипа переводится в реальную емкость (Ф), рассчитываемую по формуле:

C=α/ 2πf d R н

б) для фильтра верхних частот:

каждый элемент α -индуктивность фильтра-прототипа заменяется реальной емкостью рассчитываемой по формуле:

C= 1/ 2πf d αR н

каждый элемент α -емкость фильтра-прототипа заменяется реальной индуктивностью, рассчитываемой по формуле:

L=R н / 2πf d α

в) для полосового фильтра:

каждый элемент α -индуктивность заменяется на последовательный контур, состоящий из реальных L и C -элементов, рассчитываемых по формулам

L=αR н / 2π (f d 2 -f d 1 )

где f d 2 и f d 1 – соответственно нижняя и верхняя частоты среза полосового фильтра,

С= 1/ 4π 2 f 0 2 L

где f 0 =√ f d 1 f d 2 – средняя частота полосового фильтра.

Каждый элемент α -емкость заменяется на параллельный контур, состоящий из реальных L и C -элементов, рассчитываемых по формулам:

С=α/ 2π(f d 2 -f d 1 )R н ,

L= 1/ 4π 2 f 0 2 C

Пример. Требуется рассчитать значения элементов раздельных фильтров для трехполосной АС.

Выбираем разделительные фильтры второго порядка. Пусть выбранные значения частот разделения составляют: между низкочастотным и среднечастотным каналом f d 1 =500 Гц, между среднечастотными и высокочастотными f d 2 =5000 Гц. Сопротивление громкоговорителей на постоянном токе: низкочастотного и среднечастотного – 8 Ом, высокочастотного – 16 Ом.

Рис. 2. Пример расчета разделительных фильтров трехполосной АС а) АЧХ громкоговорителей без фильтров; б) АЧХ громкоговорителей с фильтрами, цепями согласования и коррекции; в) суммарная АЧХ АС на рабочей оси и при смещении микрофона на угол ±10° в вертикальной плоскости

Амплитудно-частотные характеристики громкоговорителей, измеренные в заглушенной камере на рабочей оси АС на расстоянии 1 м, изображены на рис.2, а) (низкочастотный громкоговоритель 100ГД-1 , среднечастотный 30ГД-8 , высокочастотный 10ГД-43 ).

Рассчитаем фильтр нижних частот:

Значение нормированных параметров элементов определим из таблицы: α 1 =2,0, α 2 =0,5.

Из рис.1 определяем схему фильтра-прототипа нижних частот: фильтр состоит из индуктивности α 1 , емкости α 2 и нагрузки R н .

Значения реальных элементов фильтров нижних частот находим по выражениям и :

L 1 НЧ =αR н / 2πf d 1 =2,0·8,0/(2·3,14·500)=5,1 мГн,

C 1 НЧ =α/ 2πf d 1 R н =0,5/(2·3,14·500·8,0)=20 мкФ.

Значения элементов полосового фильтра (для среднечастотного громкоговорителя) определяем в соответствии с выражениями …:

L 1 СЧ 1 R н / 2π (f d 2 -f d 1 )=2,0·8,0/2·3,14(5000-500)=0,566 мГн (сторона ВЧ)

С 1 СЧ = 1/ 4π 2 f 0 2 L 1 СЧ =1/4·3,14 2 ·5000·500·5,66·10 -4 =18 мкФ (сторона НЧ)

С 2 СЧ 2 / 2π(f d 2 -f d 1 )R н =0,5/2·3,14(5000-500)·8,0=2,2 мкФ (сторона ВЧ)

L 2 СЧ = 1/ 4π 2 f 0 2 C 2 СЧ =1/4·3,14 2 ·5000·500·2,2·10 -6 =4,6 мГн (сторона НЧ)

Значения элементов фильтра верхних частот определяем в соответствии с выражениями и :

C 1 ВЧ = 1/ 2πf d 2 α 1 R н =1/(2·3,14·5000·2,0·16)=1,00 мкФ,

L 2 ВЧ =R н / 2πf d 2 α 2 =16/(2·3,14·5000·2,0)=0,25 мГн.

Для согласования фильтров с входным комплексным сопротивлением громкоговорителей может применяться специальная согласующая цепь. При отсутствии этой цепи входное сопротивление громкоговорителя оказывает влияние на АЧХ и ФЧХ разделительных фильтров. Параметры элементов согласующей цепи, включаемой параллельно громкоговорителю, находятся из условия:

Y c (s )+ Y ГР (s )=1/ R E ,

где Y c (s ) – проводимость согласующей цепи, Y ГР (s ) – входная проводимость громкоговорителя, R E – электрическое сопротивление громкоговорителя на постоянном токе.

Схема согласующей цепи изображена на рис.3. Цепь является дуальной по отношению к эквивалентной электрической схеме громкоговорителя. Значения элементов цепи определяем следующим образом:

R K 1 = R E ,

C K 1 = L VC / R E 2

R K = R E 2 /R ES =Q ES R E /Q MS ,

C K =L CES / R E 2 =1/Q ES R E 2 π f s ,

L K =C MES R E 2 =Q ES R E /2 π f s ,

где L VC – индуктивность звуковой катушки, f s , C MES , L CES , R ES – электромеханические параметры громкоговорителя.

Для компенсации входного сопротивления низкочастотного громкоговорителя применяют упрощенную цепь, состоящую из последовательно включенных сопротивления R K1 и емкости C K1 . Это объясняется тем, что механический резонанс громкоговорителя не оказывает влияния на характеристики фильтра нижних частот и компенсируется только индуктивный характер входного сопротивления громкоговорителя. Целесообразность подключения полной согласующей цепи к высокочастотным и среднечастотным громкоговорителям оправдана в том случае, если резонансная частота громкоговорителя находится вблизи частоты среза фильтра верхних частот или нижней частоты среза полосового фильтра. В том случае, если частоты среза фильтров значительно выше резонансных частот громкоговорителей, включение упрощенной цепи является достаточным.

Рис.3 . Схема согласующей цепи для компенсации комплексного характера входного сопротивления громкоговорителя

Влияние входного комплексного сопротивления громкоговорителей можно рассмотреть на примере разделительных фильтров второго порядка верхних и нижних частот (рис.4).

Рис. 4. Электрическая эквивалентная схема громкоговорителя с разделительными фильтрами 2-го порядка: а – с фильтром нижних частот; б – с фильтром верхних частот; (1 – фильтр; 2 – громкоговоритель)

Параметры НЧ громкоговорителя выбраны таким образом, что его АЧХ соответствует аппроксимации по Баттерворту, т.е. полная добротность Q ts =0,707. Частота среза фильтра нижних частот выбрана в 10 раз больше резонансной частоты громкоговорителя f d =10f s . Индуктивность звуковой катушки выбрана из условия: Q VC =0,1, где Q VC – добротность звуковой катушки, определяемая как:

Q VC =L VC 2π f s / R E ,

где f s – резонансная частота громкоговорителя, R E – сопротивление звуковой катушки на постоянном токе, L VC – индуктивность звуковой катушки.

Значение Q VC =0,1 соответствует среднестатистическому значению индуктивности звуковой катушки мощных низкочастотных громкоговорителей. Вследствие этого можно считать, что индуктивность звуковой катушки L VC и активное сопротивление R E включены параллельно емкости фильтра C 1 и образуют в области частоты среза фильтра широкий максимум АЧХ входного сопротивления, за которым следует острый провал (рис.5,а). Соответствующие изменения АЧХ фильтра по напряжению заключаются в небольшом подъеме АЧХ на частоте f 2 f s (вследствие индуктивности звуковой катушки) и плавном провале, за которым следует резкий пик АЧХ из-за резонанса цепи, образуемой индуктивностью звуковой катушки и емкостью разделительного фильтра. Соответствующие изменения АЧХ и Z BX после включения согласующей цепи из последовательно включенного резистора и конденсатора показаны на рис.5,а (кривые 2, 4, 6). Включение согласующей цепи приближает характер входного сопротивления громкоговорителя к активному и АЧХ разделительного фильтра по напряжению к желаемому. Однако вследствие влияния индуктивности звуковой катушки АЧХ по звуковому давлению отличается от желаемой (кривая 4), поэтому даже после согласующей цепи иногда требуется небольшая подстройка элементов фильтров и цепи согласования.

Рис. 5 АЧХ и входное сопротивление разделительных фильтров 2-го порядка, нагруженных на громкоговоритель: а) фильтр нижних частот; б) фильтр верхних частот;

  1. АЧХ по напряжению на выходе фильтра без согласующей цепи;
  2. АЧХ по напряжению на выходе фильтра с согласующей цепью;
  3. АЧХ по звуковому давлению без согласующей цепи;
  4. АЧХ по звуковому давлению с согласующей цепью;
  5. входное сопротивление фильтра с громкоговорителем без согласующей цепи;
  6. входное сопротивление фильтра с громкоговорителем с согласующей цепью.

В случае фильтра верхних частот влияние комплексного характера входного сопротивления громкоговорителя на входное сопротивление и АЧХ фильтра носит иной характер. Если частота среза фильтра верхних частот находится вблизи частоты резонанса громкоговорителя f s (случай, иногда встречающийся в фильтрах для среднечастотных громкоговорителей, но практически невозможный для высокочастотных громкоговорителей), входное сопротивление фильтра верхних частот с громкоговорителем без согласующей цепи может иметь глубокий провал вследствие того, что на частоте резонанса громкоговорителя f s его входное сопротивление значительно возрастает и имеет чисто активный характер. Фильтр оказывается как бы на холостом ходу, из-за резкого возрастания сопротивления нагрузки и его входное сопротивление определяется последовательно включенными элементами C 1 , L 1 . Чаще встречается ситуация, когда частота среза фильтра верхних частот f d значительно выше частоты резонанса громкоговорителя f s . На рис.5,б дан пример влияния входного сопротивления громкоговорителя и его компенсации на АЧХ фильтра верхних частот по напряжению и звуковому давлению. Частота среза фильтра выбрана значительно выше частоты резонанса громкоговорителя f d ≈8 f s , параметры громкоговорителя Q TS =1,5 , Q MS =10, Q VC =0,08. Подъем АЧХ по звуковому давлению и напряжению в высокочастотной области, сопровождаемый провалом входного сопротивления, объясняется влиянием индуктивности звуковой катушки L VC . На более высоких частотах АЧХ падает, а входное сопротивление растет за счет возрастания индуктивного сопротивления звуковой катушки.

Кривые 2, 4, 6 на рис.5,б показывают влияние согласующей RC -цепи.

Выходное сопротивление разделительного фильтра верхних частот, растущее с понижением частоты, оказывает влияние на электрическую добротность громкоговорителя, увеличивая ее, и соответственно увеличивает полную добротность и форму АЧХ по звуковому давлению. Иными словами, имеет место эффект «раздемпфирования» громкоговорителя. Для набежания этого необходимо выбирать крутизну спада АЧХ фильтра и частоту среза фильтра верхних частот f d >> f s так, чтобы на частоте резонанса f s ослабление сигнала было не менее 20 дБ.

При расчете разделительных фильтров в примере, рассмотренном выше, принималось, что характер нагрузки – активный, поэтому рассчитаем согласующие цепи, компенсирующие комплексный характер входного сопротивления громкоговорителя.

Частота разделения низкочастотного и среднечастотного каналов f d 1 выбрана примерно на две октавы выше резонансной частоты среднечастотного громкоговорителя, а частота разделения среднечастотного и высокочастотного каналов f d 2 – на две октавы выше резонансной частоты высокочастотного громкоговорителя. Кроме того, можно принять, что индуктивность звуковой катушки высокочастотного громкоговорителя пренебрежимо мала в рабочем диапазоне частот и ей можно пренебречь (это справедливо для большинства высокочастотных громкоговорителей). В этом случае можно ограничиться применением упрощенной согласующей цепи для низкочастотного и среднечастотного громкоговорителей.

Пример . Измеренные (или определенные из кривой АЧХ входного сопротивления) индуктивности звуковых катушек: низкочастотного громкоговорителя L VC =3·10 -3 Г =3 мГн , среднечастотного громкоговорителя L VC =0,5·10 -3 Г=0,5 мГн . Тогда значение элементов компенсирующих цепей рассчитывают по формулам и :

для НЧ: R K 1 R π =8 Ом; С К1 =L VC /R 2 E =3 ·10 -3 /64=47 мкФ

для СЧ: R’ K 1 = R E -8 Ом; С’ К1 =L VC /R 2 E =0,5 ·10 -3 /64=8,0 мкФ.

На АЧХ среднечастотного громкоговорителя имеется пик, увеличивающий неравномерность суммарной АЧХ АС (рис.2,а); в этом случае целесообразно включить амплитудный корректор. Режектирующее звено (рис.6) применяется для коррекции пиков АЧХ громкоговорителей или всей АС. Это звено имеет чисто активное входное сопротивление, равное сопротивлению нагрузки R H и поэтому может быть включено между фильтром и громкоговорителем с скомпенсированным входным сопротивлением. В случае включения режектирующего звена на входе АС схема может быть упрощена, так как отпадает необходимость в элементах C q , L q , R q , обеспечивающих активный характер входного сопротивления звена. Значения элементов рассчитываются по формулам:

R K R H (10 -0,05 N -1),

L K = R K f /2π f 0 2 ,

C K =1/L K 4π 2 f 0 2 ,

C q = L K / R H 2 ,

L q = C K R H 2 ,

R q = R H (1+ R H / R K ),

где R H – сопротивление громкоговорителя (скомпенсированное) или входное сопротивление АС (Ом) в области резонансной частоты режектирующего звена;

f – полоса частот корректируемого пика АЧХ (отсчитывается по уровню – 3 дБ), Гц;

f 0 – резонансная частота режектора, Гц;

N – величина пика АЧХ, дБ.

Рис. 6. Режектирующее звено: а) принципиальная схема; б) АЧХ

Применим режектирующее звено, включенное между фильтром и среднечастотным громкоговорителем с согласующей цепью.

Из АЧХ среднечастотного громкоговорителя определяем f =1850 Гц, f 0 =4000 Гц, N =6 дБ. Сопротивление среднечастотного громкоговорителя с согласующей цепью R H =8 Ом.

Значения элементов режектирующего звена следующее:

R K R H (10 -0,05 N -1)=8(10 -0,05·6 -1)=7,96 Ом,

L K = R K f /2π f 0 2 =7,96·1850/2π (4000) 2 =0,147 мГн,

C K =1/L K 4π 2 f 0 2 =1/1,47·10 -4 (2π 4000) 2 =11мкФ,

C q = L K / R H 2 =1,47·10 -4 /64=2,3 мкФ,

L q = C K R H 2 =10,8·10 -6 ·64=0,7 мГн,

R q = R H (1+ R H / R K )=8(1+8/7,96)≈16,0 Ом.

В рассматриваемом примере АЧХ высокочастотного и среднечастотного громкоговорителя имеют средние уровни примерно на 6 дБ и соответственно 3 дБ выше, чем АЧХ низкочастотного громкоговорителя (запись звукового давления осуществлялась при подаче на все громкоговорители синусоидального напряжения одинаковой величины). В этом случае для уменьшения неравномерности суммарной АЧХ АС необходимо ослабить уровень среднечастотных и высокочастотных составляющих. Это можно сделать либо с помощью корректирующего высокочастотного звена первого порядка (рис.7), элементы которого рассчитываются по формулам:

R K R H (10 -0,05 N -1),

L K = R K /2π f d √(10 0,1 N -2), N ≥3 дБ,

Либо с помощью Г-образных пассивных аттенюаторов, обеспечивающих заданный уровень ослабления N (дБ) и заданное входное сопротивление R BX (рис.8). Значение элементов аттенюатора рассчитываем по формулам:

R 1 R BX (1-10 -0,05 N ),

R 2 R H R BX 10 -0,05 N /(R H R BX 10 -0,05 N ).

Рис. 7. Звено 1-го порядка, корректирующее высокие частоты: а) принципиальная схема; б) АЧХ

Рис. 8. Пассивный Г-образный аттенюатор

Рассчитаем для примера значения элементов аттенюатора для ослабления на 6 дБ сигнала высокочастотного громкоговорителя. Пусть входное сопротивление громкоговорителя с включенным аттенюатором равняется входному сопротивлению громкоговорителя, т.е. 16 Ом, тогда:

R 1 ≈16(1-10 -0,05·6)≈8,0 Ом, R 2 ≈16·10 -0,05·6 /(1-10 -0,05·6)≈16,0 Ом.

Аналогично рассчитаем значения элементов аттенюатора для среднечастотного громкоговорителя: R 1 =4,7 Ом, R 2 =39 Ом. Аттенюаторы включаются сразу после громкоговорителей с согласующими цепями.

Полная схема разделительных фильтров изображена на рис.9, АЧХ АС с рассчитанными фильтрами – на рис.2,в.

Как было сказано выше, фильтры четных порядков допускают только один вариант полярности включения громкоговорителей, в частности, фильтры второго порядка требуют включения в противофазе. Для рассматриваемого примера низкочастотный и высокочастотный громкоговоритель должны иметь идентичную полярность включения, а среднечастотный – обратную. Требования к полярности включения громкоговорителей рассматривались выше на модели АС с идеальными громкоговорителями. Поэтому при включении реальных громкоговорителей, имеющих собственную ФЧХ≠0, (в случае выбора частот разделения вблизи граничных частот рабочего диапазона громкоговорителей или при большой неравномерности АЧХ громкоговорителей) условие согласования реальных ФЧХ каналов может не соблюдаться. Поэтому для контроля реальной ФЧХ по звуковому давлению громкоговорителей с фильтрами необходимо пользоваться фазометром с линией задержки или определять условие согласования косвенно по характеру суммарной АЧХ АС в полосах разделения каналов. Правильной полярностью включения громкоговорителей можно считать ту, которая соответствует меньшей неравномерности суммарной АЧХ в полосе разделения каналов. Точное согласование ФЧХ разделяемых каналов при удовлетворении всем остальным требованиям (плоская АЧХ и т.д.) осуществляется численными методами синтеза оптимальных разделительных фильтров-корректоров на компьютере.

Рис.9. Принципиальная электрическая схема АС с рассчитанными разделительными фильтрами (емкости в микрофарадах, индуктивности – в миллигенри, сопротивления – в омах).

В разработке пассивных разделительных фильтров важную роль играет их конструкция, а также выбор типа конкретных элементов – конденсаторов, катушек индуктивности, резисторов, в частности, большое влияние на характеристики АС с фильтрами оказывает взаимное размещение катушек индуктивности, при их неудачном расположении вследствие взаимной связи возможны наводки сигнала между близко расположенными катушками. По этой причине их рекомендуется располагать взаимно перпендикулярно, только такое расположение позволяет свести к минимуму их влияние друг на друга. Катушки индуктивности являются одним из важнейших компонентов пассивных разделительных фильтров. В настоящее время многие зарубежные фирмы применяют катушки индуктивности на сердечниках из магнитных материалов, обеспечивающих большой динамический диапазон, низкий уровень нелинейных искажений и малые габариты катушек. Однако конструирование катушек с магнитными сердечниками связано с применением специальных материалов, поэтому до настоящего времени многие разработчики применяют катушки с воздушными сердечниками, основные недостатки которых – большие габариты при условии малых потерь (особенно в фильтре низкочастотного канала), а также большой расход меди; достоинства – пренебрежимо малые нелинейные искажения.

Конфигурация катушки индуктивности с воздушным сердечником, изображенная на рис.10, является оптимальной, так как она обеспечивает максимальное отношение L /R , т.е. катушка с заданной индуктивностью L , намотанная проводом выбранного диаметра, имеет при данной конфигурации намотки наименьшее сопротивление R или наибольшую добротность по сравнению с любой другой. Отношение L /R , имеющее размерность времени, связано с размерами катушки соотношением :

L /R =161,7alc /(6a +9l +10c );

L – в микрогенри, R – в омах, a , l , c – в миллиметрах.

Рис.10. Катушка индуктивности с воздушным сердечником оптимальной конфигурации: а) в разрезе; б) внешний вид.

Расчетные соотношения для данной конфигурации катушки: a =1,5с , l =c ; конструктивный параметр катушки c =√(L /R 8,66) , число витков N =19,88√(L / c ), диаметр провода в миллиметрах, d =0,841c /√ N , масса провода (материал – медь) в граммах, q = c 3 /21, длина провода в миллиметрах, B=187,3√ Lc . В том случае, если катушка индуктивности рассчитывается, исходя из провода данного диаметра, основные расчетные соотношения выглядят следующим образом:

конструктивный параметр c = 5 √(d 4 19,88 2 L /0,841 4)=3,8 5 √(d 4 L ) , сопротивление провода R =L /c 2 8,66 .

Найдем, для примера параметры катушки индуктивности рассчитанного ранее фильтра нижних частот. Индуктивность катушки составляет L 1НЧ =5,1 мГ . Сопротивление R катушки на постоянном токе определим из допустимого затухания сигнала, вносимого реальной катушкой на низких частотах. Пусть ослабление сигнала за счет потерь R в катушке составляет N ≤1дБ . Поскольку сопротивление низкочастотного громкоговорителя на постоянном токе составляет R E =8 Ом, то допустимое сопротивление катушки, определяемое из выражения R R E (10 0,05N -1), составляет R ≤0,980 Ом ; тогда конструктивный параметр катушки c =√5100/0,98·8,66=24,5 мм ; количество витков N =19,8√(5100/24,5)=287 витков ; диаметр провода d =0,841·24,5/√287=1,2 мм ; масса провода q =24,5 3 /21,4≈697 г ; длина провода B =187,3√(85,1·24,5)≈46 м.

Другим важным элементом пассивных разделительных фильтров являются конденсаторы. Обычно в фильтрах используют бумажные или пленочные конденсаторы. Из бумажных наиболее употребляемые отечественные конденсаторы МБГО. Достоинством этих типов конденсаторов являются малые потери, высокая температурная стабильность, недостатком – большие габариты, снижение допустимого максимального напряжения на высоких частотах. В настоящее время в фильтрах ряда зарубежных АС используют электролитические неполярные конденсаторы с малыми внутренними потерями, объединяющие достоинства рассмотренных конденсаторов и свободные от их недостатков.

По материалам из книги: «Высококачественные акустические системы и излучатели»

(Алдошина И.А., Войшвилло А.Г.)

Тема сведения акустических систем довольно популярна среди радиолюбителей. Этому способствует не только желание созидать, благо динамиков нынче на любой бюджет, но также и неудовлетворительное качестве серийной акустики. Изготовление фильтров требует как правило большого опыта, отчасти эмпирического, так как строгий математический расчет в лице симуляций никак не отражает звучание, и тем более не может дать ответ как сводить. Примерная прикидка не всегда дает ожидаемые результаты.

Виной тому отсутствие внятной теории именно сведения, а не электрических фильтров, с ними все ясно, чего нельзя сказать про сведение, где все базируется на нюансах которые в литературе как правильно не описаны. Цель данной статьи поведать некоторые особенности проектирования фильтров на реальном примере. В этой статье, к величайшему сожалению, не будет полноценного расчета или инструкции как брать и делать, ибо каждый случай уникален и требует персонального рассмотрения, и в лучшем случае можно указать на что обратить внимание и задать вектор размышлений в целом.

Важные характеристики АС

Для начала разберёмся чем характеризуется акустическая система. Тут три характеристики: амплитудная, фазовая и импедансная .

  • АЧХ считается наиболее важной, так как больше определяет звучание, впрочем не в ней счастье, ровная АЧХ еще не гарантия хорошего звука.
  • ФЧХ сама о себе не слышна, может быть слышен резкий перегиб фазы в точке раздела.
  • ИЧХ вовсе на звучание не влияет, зато влияет на усилитель, но не на каждый, а лишь на тот у которого высокое внутреннее сопротивление, в частности ламповые.

Из-за кривого импеданса многие колонки могут не спеться с лампой, вся неровность импеданса вылезет в АЧХ. В каком-то случае это может пойти на пользу, но надеяться на это не стоит, хотя бы потому, что такая акустика будет крайне чувствительна к усилителю, станут слышны лампы, их режимы, а сравнение с каменным усилителем становится вообще не корректным.

Потому, если задаться цель построить акустику мало чувствительную к усилителю, необходимо обеспечить постоянство импеданса во всем диапазоне частот, а это накладывает определенные ограничения. В частности это обязывает применять фильтра настроеные на равную частоту среза и имеющие равную добротность.

Это правило позволяет для настройки фильтра контролировать только линейность импеданса, что исключает необходимость измерения АЧХ фильтров и в случаи отсутствия хорошего микрофона в измерении ачх динамиков, то есть можно обойтись минимальным набором приборов: генератором (возможно программным) и вольтметром.

Практическая работа

Плавно переходим от теории к практике. Достались мне винтажные колонки под названием Kompaktbox B 9251. И первое что было сделано - произведено прослушивание.

С холодным камнем звук был в среднем не плох, а если говорить конкретно, то местами хороший, а местами как попало. С теплой лампой играть вообще отказались. На основе этих наблюдений был сделан вывод о наличии глубоко зарытого потенциала. Вскрытие показало, что немецкие инженеры решили обойтись одним единственным конденсатором последовательно с ВЧ головкой. Измерение АЧХ дало страшную картину. На рисунке АЧХ одной колонки, кривая с глубокой дыркой на 6 кгц из-за плохого контакта разъема, на нее внимание не обращать. АЧХ отдельно ВЧ и НЧ приведены ниже.

Частота раздела

Тут самое время задуматься о частоте раздела. Обычно частота раздела выбирается на ровных горизонтальных участках, вдали от резонансов и завалов, стараясь обойти внезапные неравномерности как потенциальные источники искажений... А если вспомнить что существует фаза, о которой мало известно, а если известно, то векторно ачх на бумажке не сложишь, а из-за кривизны фаз даже на идеально ровной ачх что-то вылезет, что-то провалится в большей или меньшей степени. Также надо помнить что может дать сам динамик, особенно ВЧ, скажем не надо заставлять дюймовый купольник играть от двух, а тем более одного килогерца, даже если он способен их отыграть по АЧХ.

Не забывайте, что большой ход порождает интермодуляционные искажения, поэтому каждому размеру динамика соответствует свой диапазон частот. В свете вышесказанного понятие частоты раздела размазывается на область, куда стоить сводить, а конечную точку подбирать иначе, например на слух. Или вовсе не подбирать, но про это чуть позже.

Итак, смотрим какие уникальные динамики нам достались. Высокочастотник начинает валить с 1,3 кгц, значит ниже его пускать нельзя. С другой стороны низкочастотник пытается играть по самые 10 кгц, с переменным успехом. Однако здравый смысл подсказывает, что выше килогерца его пускать плохая затея. И что спрашивается делать, если рабочие диапазоны динамиков не пересекаются?

Тут есть два варианта: если спады имеют адекватную крутизну, то лучше всего сводить в ямку, особенно если ямка получается широкой. В случае же нашем, когда спады круты как обрывы, надо держатся подальше от самого крутого из них. Чаще всего это может случится с высокочастотником, им всегда тяжко работать у нижней границы диапазона, поэтому им целесообразнее облегчить жизнь возлагая воспроизведение нижней части диапазона на НЧ динамик, который отыграет хоть плохо, но не нагадит. Поэтому ограничиваем диапазон участком от 1,5 кгц до 2,2 кгц.

Порядок фильтра и его добротность

Следующий параметр, с которым надо определиться - это порядок фильтра и его добротность. В данной статье будут рассматриваться два порядка, первый и второй.

  • С первым все просто: есть катушка, есть конденсатор, считаем их параметры под требуемую частоту среза и при надобности корректируем значения до получения желаемой АЧХ, ФЧХ, ИЧХ.
  • Со вторым порядком по-хитрее, там уже две катушки и два конденсатора. От значений номиналов зависит такой параметр как добротность, он определяет крутизну спада АЧХ и в некоторой степени сдвиг фазы. Поскольку влияние фазового сдвига и крутизны умозрительно не прикинешь, остается просто выбрать в какую сторону думать. А думать тут в сторону низкой добротности, читай больше индуктивности в катушках, меньше емкости в конденсаторах.

Как выбрать порядок. Тут руководствуются уже знакомыми соображениями о том, на что способны излучатели, в особенности высокочастотник. Если большой ход ему противопоказан (как в нашем случае) то предпочтение отдаем второму порядку.

Для полноты картины следует упомянуть, что порядок также определяет степень совместной работы динамиков, но это уже информация для самостоятельного размышления.

Импедансная характеристика динамиков

Когда с примерными параметрами все более или менее ясно, самое время переходить к практике. Снимаем импедансную характеристику динамиков. С целью оценки сопротивления на графике имеется лесенка с шагом в один Ом. Скачек на 110 герцах это переключение с 10 Ом на 20.

Разумеется с такими горбами ни один фильтр нормально, и уж тем более расчетно работать не будет, особенно фильтр НЧ. Фильтру ВЧ этот подъем работать в общем то не мешает, однако как упоминалось ранее такой подъем на конце диапазона приведет к подъему высоких частот, в случае если усилитель имеет высокое сопротивление. Это можно использовать и во благо, оставив подъем небольшим.

Для выравнивания этих подъемов применяют так называемую цепочку Цобеля. Она состоит из последовательно включенных резистора и конденсатора. Проще всего ее подобрать методом научного тыка: берется реостат, горсть конденсаторов, и все это двигается пока не получится ровная линия.

Для примерного представления что от чего зависит привожу набор графиков для различных емкостей и сопротивлений. Ступенька начинается с 10 Ом.

Зная минимальное сопротивление НЧ звена, нужно привести к такому же и ВЧ звено. Тут много вариантов как соединить два резистора и цепочку Цобеля, и каждый кто решился на такой отважный шаг как сведение сам способен определить вид подключения и номиналы резисторов, поэтому описывать данную процедуру здесь излишне. Конкретно в данных колонках по результатам предварительного прослушивания решено было оставить родные резисторы на 2,2 ома и цепочку Цобеля параллельно ВЧ динамику.

Сведение фильтров

Теперь начинается финальный этап - сведение фильтров. Пора намотать катушки... или не намотать? Мотать всегда лень, нет провода, каркасов, конкретных значений индуктивности. В виду этих причин поискав в хламе нашлись пары катушек на 0,8 мкг и 3 мкг - на них и пришлось строить. В крайнем случаи всегда же можно домотать или отмотать лишнее.

По графику видно, что раздел попал в район 1,8 кгц, что вполне вписывается в задуманные границы. Подбором конденсаторов удалось добиться следующего импеданса. На частоте раздела имеется два бугорка, но их высота меньше полу ома - это не критично. Это не конечный его вид, в последствии был несколько увеличен резистор в цепочке Цобеля пищалки.

На приведенных выше картинках АЧХ как самого фильтра, так и АЧХ динамиков с его включением.

Фазировка динамиков

На этом сведение подходит в концу. Остается только определиться с фазировкой динамиков. Тут есть как минимум три способа: на слух, по форме АЧХ и по фазовому сдвигу на частоте раздела. Если у динамиков АЧХ и ФЧХ в меру линейная, и фильтр фазу на разделе сильно не накручивает, то при смене правильной фазы на неправильную на частоте раздела появится глубокий провал, пропустить его сложно. В таком случае стоит подгонять фазу по по ее сдвигу. Сделать это можно осциллографом подавая на горизонтальную развертку сигнал с усилителя, а на вертикальное отклонение с микрофона.

Подают на вход усилителя синус с частотой раздела и не меняя взаимного расположения микрофона и колонки переключают ВЧ и НЧ динамики. По одинаковости фигур Лиссажу делается вывод о равенстве фаз излучателей. Этот метод хорошо подходит для фильтров первого порядка. С кривизной наших динамиков этот метод себя не оправдывает, поэтому сравниваем АЧХ при разной фазировке.

Второй вариант заметно хуже. Однако и первый не предел мечтаний, но так как двигать индуктивности катушек не просто, а ковыряться дальше уже лень, то все было оставлено как есть.

Сборка фильтров

В завершение пару слов про сборку. В фильтре применяются сравнительно большие емкости, 20 мкф, 27 мкф, а места в корпусе и так не много, бумаги или пленки не набрать. Приходится ставить электролиты. И если в фильтре НЧ звучание от их применения пострадает не сильно, а в цобеле их можно и вовсе не услышать, то в фильтре ВЧ звучанием конденсаторов пренебрегать опасно. Именно по этой причини были применены бумажный МБГЧ и пленочный К73-16, а все электролиты зашунтированы бумажными МБГО на 4 мкФ.

Не стоит увлекаться параллеленьем сильно разных конденсаторов. Основной критерий здесь тангенс угла потерь. Если к примеру поставить в шунт к бумажному конденсатору аудиофильский полипропилен, то скорее всего вылезут верха и будут они кислотные. Вероятно тут можно составить аналогию с внутренним сопротивлением, сравнив с ним тангенс угла потерь: чем он меньше, тем больше через конденсатор пройдет сигнала, а поскольку емкость у такого высококачественного конденсатора меньше, то через него пройдет только высокочастотная часть сигнала, отсюда и имеем повышенные уровень верхов. Но это только аналогия, для лучшего понимания влияния шунтов на звук.

Про то как надо разносить катушки и какой толщины применять провода статей написано предостаточно, повторяться здесь не буду. Проще показать картинку (тут неправильно припаян цобель высокочастотника, он должен стоять после резистора).

Звучание системы

И конечно же надо сказать про звук. Стало лучше, сцена получилась очень недурственная. Кривизна АЧХ особо не слышна, даже наоборот, подъем на середине поддает детальности, верхов как ни странно хватает. Был замечен интересный эффект на басу. Как можно заметить по АЧХ на сотне герц большой подъем, а за ним завал, разумеется качающего баса нет, но есть мид бас. К примеру партия гитары кажется немного просаженным, а нижний бас, партия бас гитары, переходит как бы в слышимую область и читается очень четко, создается впечатление наличия того самого низкого баса.

Конечно ящики маловаты, и порой слышно подбубнивание, для устранения этого эффекта в каждую колонку было добавлено по 30 грамм натуральней шерсти. В целом данная акустика играет тепло и мягко даже без лампового усилителя, сохраняя в звуке строгость и точность камня, а вот с теплой лампой получается перебор мягкости. Все же им нужен усилитель по-строже - триод или двухтакт, но это тема для следующих экспериментов. Специально для сайта - SecreTUseR.

Обсудить статью ФИЛЬТР ДЛЯ АКУСТИКИ

О БЕДНОЙ ПИЩАЛКЕ ЗАМОЛВИТЕ СЛОВО

А.И.Шихатов 2003

Традиционно раздел полос СЧ и ВЧ (или мидбас-ВЧ) производят пассивными кроссоверами (разделительными фильтрами). Это особенно удобно при использовании готовых компонентных наборов. Однако, хотя характеристики кроссоверов и оптимизированы для данного комплекта, они не всегда удовлетворяют поставленной задаче.
Рост индуктивности звуковой катушки с частотой приводит к увеличению импеданса головки. Причем индуктивность эта у "среднестатистического" мидбаса составляет 0,3-0,5 мГн, и уже на частотах 2-3 кГц импеданс возрастает практически в два раза. Поэтому при расчете пассивных кроссоверов применяют два подхода: используют в расчетах реальное значение импеданса на частоте раздела или вводят цепи стабилизации импеданса (компенсаторы Цобеля). Об этом уже написано немало, поэтом не будем повторяться.
У пищалок стабилизирующие цепи обычно отсутствуют. При этом исходят из того, что рабочая полоса частот невелика (две-три октавы), а индуктивность незначительна (обычно менее 0,1 мГн). Вследствие этого рост импеданса невелик. В крайнем случае, увеличение импеданса компенсируют резистором сопротивлением 5-10 Ом, включенным параллельно пищалке.
Однако все не так просто, как кажется на первый взгляд, и даже такая скромная индуктивность приводит к любопытным последствиям. Проблема заключена в том, что пищалки работают совместно с фильтром ВЧ. Независимо от порядка в нем имеется емкость, включенная последовательно с пищалкой, и она образует с индуктивностью звуковой катушки колебательный контур. Частота резонанса контура оказывается в полосе рабочих частот пищалки, и на АЧХ возникает "горб", величина которого зависит от добротности этого контура. В результате неизбежна окраска звучания. В последнее время появилась немало моделей пищалок высокой чувствительности (92 дБ и выше), индуктивность которых достигает 0,25 мГн. Поэтому вопрос согласования пищалки с пассивным кроссовером приобретает особую остроту.
Для анализа использовалась среда моделирования Micro-Cap 6.0, но те же результаты можно получить и с помощью других программ (Electronic WorkBench, например). В качестве иллюстраций приведены только наиболее характерные случаи, остальные рекомендации даны в конце статьи в виде выводов. В расчетах использовалась упрощенная модель пищалки, учитывающая только ее индуктивность и активное сопротивление. Данное упрощение вполне допустимо, поскольку резонансный пик импеданса большинства современных пищалок невелик, а частота механического резонанса подвижной системы находится за пределами рабочей полосы частот. Учтем также, что АЧХ по звуковому давлению и АЧХ по электрическому напряжению - две большие разницы, как говорят в Одессе.
Взаимодействие пищалки с кроссовером особенно хорошо заметно у фильтров первого порядка, характерных для недорогих моделей (рисунок 1):

Рисунок 1

Видно, что даже при индуктивности 0,1 мГн имеется выраженный пик в области частот 7-10 кГц, придающий звучанию характерную "хрустальную" окраску". Увеличение индуктивности смещает резонансный пик в область более низких частот и увеличивает его добротность, что приводит к заметному "цыканью". Побочное следствие увеличение добротности, которое можно обратить на пользу - увеличение крутизны АЧХ. В области частоты раздела она близка к фильтрам 2 порядка, хотя на большом удалении возвращается к исходному для 1 порядка значению (6 дБ/октава).
Введение шунтирующего резистора позволяет "приручить" горб на АЧХ, так что на кроссовер можно возложить и некоторые функции эквалайзера. Если шунт сделать на основе переменного резистора (или набора резисторов с переключателем), то можно проводить даже оперативную регулировку АЧХ в пределах 6-10 дБ. (рисунок 2):


Рисунок 2

Однако фильтры первого порядка обеспечивают слишком малое затухание за пределами рабочей полосы, поэтому пригодны только при небольшой подводимой мощности или достаточно высокой частоте раздела (7-10 кГц). Поэтому в большинстве серьезных конструкций используют фильтры более высоких порядков, от второго до четвертого.
Рассмотрим возможности воздействия на АЧХ для фильтров второго порядка, как самых распространенных. Для наглядности использована модель с большой индуктивностью. Те же результаты получаются и с традиционными пищалками, только параметры фильтров и степень воздействия на АЧХ будут другими. Для пищалок с малой индуктивностью шунт не обязателен.
Первый способ - изменение добротности фильтра при неизменной частоте раздела за счет соотношения емкости и индуктивности фильтра (рисунок 3):


Рисунок 3

Одновременное изменение емкости и индуктивности в кроссовере затруднено, поэтому данный метод для оперативной регулировки неудобен. Однако он незаменим в тех случаях, когда необходимая степень коррекции известна заранее, на этапе проектирования.

Второй способ - регулировка добротности при помощи шунта (аналогично рассмотренному ранее способу для фильтра первого порядка). Исходная добротность разделительного фильтра при этом выбирается высокой (рисунок 4):


Рисунок 4

Третий способ - введение резистора последовательно с пищалкой. Особенно удобен этот способ для пищалок индуктивностью свыше 100 мГн. В этом случае суммарный импеданс цепи "резистор-пищалка" в процессе регулирования изменяется незначительно, поэтому уровень сигнала практически не изменяется (рисунок 5):


Рисунок 5

Выводы
Стабилизирующие цепи не обязательны только для пищалок малой индуктивности (менее 0,05 мГн).
Для пищалок с индуктивностью звуковой катушки 0,05-0,1 мГн наиболее выгодны параллельные стабилизирующие цепи (шунты).
Для пищалок с индуктивностью звуковой катушки более 0,1 мГн можно использовать как параллельные, так и последовательные стабилизирующие цепи.
Изменение сопротивления стабилизирующей цепи позволяет воздействовать на АЧХ.
Для фильтров 1 порядка изменение параметров стабилизирующей цепи оказывает заметное влияние на частоту среза и параметры "горба". У фильтров 2 порядка частота среза определяется параметрами его элементов и зависит от индуктивности головки и параметров стабилизирующей цепи в меньшей степени.
Величина резонансного "горба", вызванного индуктивностью пищалки, находится в прямой зависимости от сопротивления шунта и в обратной зависимости от сопротивления последовательного резистора.
Величина резонансного "горба" в области частоты среза находится в прямой зависимости от добротности фильтра.
Добротность фильтра пропорциональна результирующему сопротивлению нагрузки (ВЧ головки с учетом сопротивления стабилизирующей цепи).
Фильтр повышенной добротности можно рассчитывать по стандартной методике, но на сниженное в 2-3 раза относительно номинального сопротивление нагрузки.

Предложенные способы регулирования АЧХ применимы и к фильтрам более высоких порядков, но, поскольку число "степеней свободы" там возрастает, дать конкретные рекомендации в этом случае затруднительно. Пример изменения АЧХ фильтра третьего порядка за счет шунтирующего резистора приведен на рисунке 6:


Рисунок 6

Видно, что АЧХ приобретает различный вид, что заметно влияет на тембр звучания. Кстати, лет 20 назад многие "домашние" трех-четырех полосные АС имели переключаемые АЧХ "normal/crystal/chirp" ("гладкий-хрустальный-чирикающий"). Это достигалось изменением уровня полос СЧ и ВЧ.
Переключаемые аттенюаторы используются в составе многих кроссоверов, причем по отношению к пищалке их можно рассматривать как комбинацию последовательных и параллельных стабилизирующих цепей. Воздействие их на результирующую АЧХ предсказать достаточно сложно, в этом случае удобнее прибегнуть к моделированию.


Рисунок 7

На рисунке 7 приведена схема и АЧХ фильтра третьего порядка, разработанного автором для пищалок Prology RX-20s и EX-20s. В конструкции использованы конденсаторы К73-17 (2,2 мкФ, 63 В) и самодельные катушки индуктивности. Для снижения активного сопротивления они намотаны на ферритовых кольцах. Тип сердечника неизвестен: наружный диаметр 15 мм, магнитная проницаемость порядка 1000-2000. Поэтому подгонка индуктивности велась по прибору Ф-4320. Каждая катушка содержит 13 витков изолированного провода диаметром 1 мм.
Качество звучания оказалось не в пример выше исходного, а регулирование АЧХ вполне соответствовало поставленной задаче. Однако следует отметить, что фильтр получился проблемным: входной импеданс имеет резко выраженный минимум, и возможно срабатывание защиты усилителя.

Адрес администрации сайта:

НЕ НАШЕЛ, ЧТО ИСКАЛ? ПОГУГЛИ:

С целью снижения интермодуляционных искажений при звуковоспроизведении громкоговорители Hi-Fi систем составляют из низкочастотных, среднечастотных и высокочастотных динамических головок. Их подключают к выходам усилителей через разделительные фильтры, представляющие собой комбинации LC фильтров нижних и верхних частот.

Ниже приведена методика расчета трехполосного разделительного фильтра по наиболее распространенной схеме.

Частотная характеристика разделительного фильтра трехполосного громкоговорителя в общем виде показана на рис. 1. Здесь: N - относительный уровень напряжения на звуковых катушках головок: fн и fв - нижняя и верхняя граничные частоты воспроизводимой громкоговорителем полосы; fр1 и fр2 - частоты раздела.

В идеальном случае выходная мощность на частотах раздела должна распределяться поровну между двумя головками. Это условие выполняется, если на частоте раздела относительный уровень напряжения, поступающего на соответствующую головку, снижается на 3 дБ по сравнению с уровнем в средней части ее рабочей полосы частот.

Частоты раздела следует выбирать вне области наибольшей чувствительности уха (1... 3 кГц). При невыполнении этого условия, из-за разности фаз колебаний, излучаемых двумя головками на частоте раздела одновременно, может быть заметно "раздвоение" звука. Первая частота раздела обычно лежит в интервале частот 400... 800 Гц, а вторая - 4... 6 кГц. При этом низкочастотная головка будет воспроизводить частоты в диапазоне fн...fp1. среднечастотная - в диапазоне fp1... fр2 и высокочастотная - в диапазоне fр2...fв.

Один из распространенных вариантов электрической принципиальной схемы трехполосного громкоговорителя приведен на рис. 2. Здесь: B1 - низкочастотная динамическая головка, подключенная к выходу усилителя через фильтр нижних частот L1C1; В2 - среднечастотная головка, соединенная с выходом усилителя через полосовой фильтр, образованный фильтрами верхних частот C2L3 и нижних частот L2C3. На высокочастотную головку В3 сигнал подается через фильтры верхних частот C2L3 и C4L4.

Расчет емкостей конденсаторов и индуктивностей катушек производят исходя из номинального сопротивления головок громкоговорителя. Поскольку номинальные сопротивления головок и номинальные емкости конденсаторов образуют ряды дискретных значений, а частоты раздела могут варьироваться в широких пределах, то расчет удобно производить в такой последовательности. Задавшись номинальным сопротивлением головок, подбирают емкости конденсаторов из ряда номинальных емкостей (или суммарную емкость нескольких конденсаторов из этого ряда) такими, чтобы получившаяся частота раздела попадала в указанные выше частотные интервалы.

Тип конденсатора Емкость, мкФ
МБМ 0,6
МБГО, МВГП 1; 2; 4; 10
МБГП 15; 26
МБГО 20; 30

{mospagebreak}Емкости конденсаторов фильтров С1...С4 для различных сопротивлений головок и соответствующие значения частот раздела приведены в табл 2.

Zг,0м 4.0 4.5 5.0 6.5 8.0 12,5 15
С1,C2, мкф 40 30 30 20 20 15
fp1, Гц 700 840 790 580 700 - 520
С3,С4, мкф 5 5 4 4 3 2 1,5
fр2,кГц 5,8 5,2 5 4,4 4,8 4,6 5,4

Легко видеть, что все значения емкостей могут быть либо непосредственно взяты из номинального ряда емкостей. либо получены параллельным соединением не более чем двух конденсаторов (см. табл. 1).

После того как емкости конденсаторов выбраны, определяют индуктивности катушек в миллигенри по формулам:

В обеих формулах: Zг-в омах; fp1, fр2 - в герцах.

Поскольку полное сопротивление головки является частотнозависимой величиной, для расчета обычно принимают указанное в паспорте головки номинальное сопротивление Zг, оно соответствует минимальному значению полного сопротивления головки в диапазоне частот выше частоты основного резонанса до верхней граничной частоты рабочей полосы. При этом надо иметь в виду, что фактическое номинальное сопротивление различных образцов головок одного и того же типа может отличаться от паспортного значения на ±20%.

В некоторых случаях радиолюбителям приходится использовать в качестве высокочастотных головок имеющиеся динамические головки с номинальным сопротивлением, отличающимся от номинальных сопротивлений низкочастотной и высокочастотной головок. При этом согласование сопротивлений осуществляют, подключая высокочастотную головку В3 и конденсатор С4 к различным выводам катушки L4 (рис. 2), т. е. эта катушка фильтра играет одновременно роль согласующего автотрансформатора. Катушки можно намотать на круглых деревянных, пластмассовых или картонных каркасах с щечками из гетинакса. Нижнюю щечку следует сделать квадратной; так ее удобно крепить к основанию - гетинаксовой плате, на которой крепят конденсаторы и катушки. Плату крепят шурупами ко дну ящика громкоговорителя. Во избежание дополнительных нелинейных искажений катушки должны выполняться без сердечников из магнитных материалов.

Пример расчета фильтра.

В качестве низкочастотной головки громкоговорителя используется динамическая головка 6ГД-2, номинальное сопротивление которой Zг=8 Ом. в качестве среднечастотной - 4ГД-4 с таким же значением Zг и в качестве высокочастотной - ЗГД-15, для которой Zг=6,5 Ом. Согласно табл. 2 при Zг=8 Ом и емкости С1=С2=20 мкф fp1=700 Гц, а при емкости С3=С4=3 мкф fр2=4,8 кГц. В фильтре можно применить конденсаторы МБГО со стандартными емкостями (С3 и С4 составляют из двух конденсаторов).

По приведенным выше формулам находим: L1=L3=2,56 мГ; L2=L4=0,375 мГ (для автотрансформатора L4 - это значение индуктивности между выводами 1-3).

Коэффициент трансформации автотрансформатора

На рис. 3 показана зависимость уровня напряжения на звуковых катушках головок от частоты для трехполосной системы, соответствующей примеру расчета. Амплитудно-частотные характеристики низкочастотной, среднечастотной и высокочастотной областей фильтра обозначены соответственно НЧ, СЧ и ВЧ. На частотах раздела затухание фильтра равно 3,5 дБ (при рекомендуемом затухании 3 дБ).

Отклонение объясняется отличием полных сопротивлений головок и емкостей конденсаторов от заданных (номинальных) значений и индуктивностей катушек от полученных расчетом. Крутизна спада кривых НЧ и СЧ составляет 9 дБ на октаву и кривой ВЧ - 11 дБ на октаву. Кривая ВЧ соответствует несогласованному включению громкоговорителя 1 ГД-3 (в точки 1-3). Как видно, в этом случае фильтр вносит дополнительные частотные искажения.

Примечание от авторов:

В приводимой методике расчета принято, что среднее звуковое давление при одной и той же подводимой электрической мощности для всех головок имеет примерно одинаковое значение. Вели же звуковое давление, создаваемое какой-либо головкой, заметно больше, то для выравнивания частотной характеристики громкоговорителя по звуковому давлению эту головку рекомендуется подключать к фильтру через делитель напряжения, входное сопротивление которого должно быть равно принятому при расчете номинальному сопротивлению головок.

РАДИО N 9, 1977 г., с.37-38 E. ФРОЛОВ, г. Москва

В своей жизни вы не раз слышали слово “фильтр”. Фильтр для воды, воздушный фильтр, масляной фильтр, “фильтруй базар” в конце концов). В воздушном, водяном, масляном и других видах фильтров происходит очистка от посторонних частиц и примесей. Но что же фильтрует электрический фильтр? Ответ простой: частоту.

Что такое электрический фильтр

Электрический фильтр – это устройство для выделения желательных компонентов спектра (частот) и/или для подавления нежелательных. Для остальных частот, которые не входят в , фильтр создает большое затухание, вплоть до полного их исчезновения.

Характеристика идеального фильтра должна вырезать строго определенную полосу частота и “давить” другие частоты до полного их затухания. Ниже пример идеального фильтра, который пропускает частоты до какого-то определенного значения частоты среза.

На практике такой фильтр реализовать нереально. При проектировании фильтров стараются как можно ближе приблизиться к идеальной характеристике. Чем ближе к идеальному фильтру, тем лучше он будет исполнять свою функцию фильтрации сигналов.

Фильтры, которые собираются только на пассивных радиоэлементах, таких как , называют пассивными фильтрами . Фильтры, которые в своем составе имеют один или несколько активных радиоэлементов, типа или , называют активными фильтрами .

В нашей статье мы будем рассматривать пассивные фильтры и начнем с самых простых фильтров, состоящих из одного радиоэлемента.

Одноэлементные фильтры

Как вы поняли из названия, одноэлементные фильтры состоят из одного радиоэлемента. Это может быть либо конденсатор, либо катушка индуктивности. Сами по себе катушка и конденсатор не являются фильтрами – это ведь по сути просто радиоэлементы. А вот вместе с и с нагрузки их уже можно рассматривать как фильтры. Здесь все просто. Реактивное сопротивление конденсатора и катушки зависят от частоты. Подробнее про реактивное сопротивление вы можете прочитать в статье.

В основном одноэлементные фильтры применяются в аудиотехнике. Для фильтрации используется либо катушка, либо конденсатор, в зависимости от того, какие частоты надо выделить. Для ВЧ-динамика (пищалки), мы последовательно с динамиком соединяем конденсатор, который будет пропускать через себя ВЧ-сигнал почти без потерь, а низкие частоты будет глушить.


Для сабвуферного динамика нам нужно выделить низкие частоты (НЧ), поэтому последовательно с сабвуфером соединяем катушку индуктивности.


Номиналы одиночных радиоэлементов можно, конечно, рассчитать, но в основном подбирают на слух.

Для тех, кто не желает заморачиваться, трудолюбивые китайцы создают готовые фильтры для пищалок и сабвуфера. Вот один из примеров:


На плате мы видим 3 клеммника: входной клеммник (INPUT), выходной под басы (BASS) и клеммник под пищалку (TREBLE).

Г-образные фильтры

Г-образные фильтры состоят из двух радиоэлементов, один или два из которых имеют нелинейную АЧХ.

RC-фильтры

Думаю, начнем с самого известного нам фильтра, состоящего из резистора и конденсатора. Он имеет две модификации:



С первого взгляда можно подумать, что это два одинаковых фильтра, но это не так. В этом легко убедиться, если построить АЧХ для каждого фильтра.

В этом деле нам поможет Proteus. Итак, АЧХ для этой цепи

будет выглядеть вот так:


Как мы видим, АЧХ такого фильтра беспрепятственно пропускает низкие частоты, а с ростом частоты ослабляет высокие частоты. Поэтому, такой фильтр называют фильтром низких частот (ФНЧ).

А вот для этой цепи

АЧХ будет выглядеть таким образом


Здесь как раз все наоборот. Такой фильтр ослабляет низкие частоты и пропускает высокие частоты, поэтому такой фильтр называется фильтром высокой частоты (ФВЧ).

Наклон характеристики АЧХ

Наклон АЧХ в обоих случаях равняется 6 дБ/октаву после точки, соответствующей значению коэффициента передачи в -3дБ, то есть частоты среза. Что означает запись 6 дБ/октаву? До или после частоты среза, наклон АЧХ принимает вид почти прямой линии при условии, что коэффициент передачи измеряем в . Октава – это соотношение частот два к одному. В нашем примере наклон АЧХ в 6 дБ/октаву говорит о том, что при увеличении частоты в два раза, у нас прямая АЧХ растет (или падает) на 6 дБ.

Давайте рассмотрим этот пример

Возьмем частоту 1 КГц. На частоте от 1 КГц до 2 КГц падение АЧХ составит 6 дБ. На промежутке от 2 КГц и до 4 КГц АЧХ снова падает на 6 дБ, на промежутке от 4 КГц и до 8 КГц снова падает на 6 дБ, на частоте от 8 КГц и до 16 КГц затухание АЧХ снова будет 6 дБ и тд. , следовательно, наклон АЧХ составляет 6 дБ/октаву. Есть также такое понятие, как дБ/декада. Оно используется реже и обозначает разницу между частотами в 10 раз. Как найти дБ/декаду можно прочитать в статье.

Чем больше крутизна наклона прямой АЧХ, тем лучше избирательные свойства фильтра:


Фильтр, с характеристикой наклона в 24 дБ/октаву явно будет лучше, чем в 6 дБ/октаву, так как становится более приближенным к идеальному.

RL-фильтры

Почему бы не заменить конденсатор катушкой индуктивности? Получаем снова два типа фильтров:



Для этого фильтра

АЧХ принимает такой вид:


Получили все тот же самый ФНЧ

а для такой цепи


АЧХ примет такой вид


Тот же самый фильтр ФВЧ

RC и RL фильтры называют фильтрами первого порядка и они обеспечивают наклон характеристики АЧХ в 6 дБ/октаву после частоты среза.

LC-фильтры

А что если заменить резистор конденсатором? Итого мы имеем в схеме два радиоэлемента, реактивное сопротивление которых зависит от частоты. Здесь получаются также два варианта:



Давайте рассмотрим АЧХ этого фильтра



Как вы могли заметить, его АЧХ в области низких частот получилась наиболее плоской и заканчивается шипом. Откуда вообще он взялся? Мало того, что цепь собрана из пассивных радиоэлементов, так она еще и усиливает сигнал по напряжению в области шипа!? Но не стоит радоваться. Усиливает по напряжению, а не по мощности. Дело в том, что мы получили , у которого, как вы помните, на частоте резонанса возникает резонанс напряжений. При резонансе напряжений, напряжение на катушке равняется напряжению на конденсаторе.

Но это еще не все. Это напряжение в Q раз больше, чем напряжение, подаваемое на последовательный колебательный контур. А что такое Q? Это . Вас этот шип не должен смущать, так как высота пика зависит от добротности, которая в реальных схемах составляет небольшое значение. Примечательна эта схема также тем, что наклон ее характеристики составляет 12 дБ/октаву, что в два раза лучше, чем у RC и RL фильтров. Кстати, если даже максимальная амплитуда превышает значения в 0 дБ, то все равно полосу пропускания определяем на уровне в -3 дБ. Об этом тоже не стоит забывать.

Все то же самое касается и ФВЧ фильтра



Как я уже сказал, LC фильтры называют уже фильтрами второго порядка и они обеспечивают наклон АЧХ в 12 дБ/октаву.

Сложные фильтры

Что будет, если соединить два фильтра первого порядка друг за другом? Как ни странно, получится фильтр второго порядка.


Его АЧХ будет более крутой, а именно 12 дБ/октаву, что характерно для фильтров второго порядка. Догадайтесь, какой наклон будет у фильтра третьего порядка;-) ? Все верно, прибавляем 6 дБ/октаву и получаем 18 дБ/октаву. Соответственно, у фильтра 4 -ого порядка наклон АЧХ будет уже 24 дБ/октаву и тд. То есть, чем больше звеньев мы соединим, тем круче будет наклон АЧХ и тем лучше будут характеристики фильтра. Все оно так, но вы забыли то, что каждый последующий каскад вносит свою лепту в ослабление сигнала.

В приведенных схемах мы строили АЧХ фильтра без внутреннего сопротивления генератора а также без нагрузки. То есть в данном случае сопротивление на выходе фильтра равняется бесконечности. Значит, желательно делать так, чтобы каждый последующий каскад имел значительно бОльшее входное сопротивление, чем предыдущий. В настоящее время каскадирование звеньев уже кануло в лету и сейчас используют активные фильтры, которые построены на ОУ.

Разбор фильтра с Алиэкспресс

Для того, чтобы вы уловили предыдущую мысль, мы разберем простой пример от наших узкоглазых братьев. На Алиэкпрессе продаются различные фильтры для сабвуфера. Рассмотрим один из них.


Как вы заметили, на нем написаны характеристики фильтра: данный тип фильтра рассчитан на сабвуфер мощностью 300 Ватт, наклон его характеристики 12 дБ/октаву. Если соединять к выходу фильтра саб с сопротивлением катушки в 4 Ома, то частота среза составит 150 Гц. Если же сопротивление катушки саба 8 Ом, то частота среза составит 300 Гц.

Для полных чайников продавец даже привел схему в описании товара. Выглядит она вот так:



Чаще всего можно увидеть прямо на динамиках значение сопротивления катушки на постоянном токе: 2 Ω, 4 Ω, 8 Ω. Реже 16 Ω. Значок Ω после цифр обозначает Омы. Также не забывайте, что катушка в динамике обладает индуктивностью.

Как ведет себя катушка индуктивности на разных частотах?


Как вы видите, на постоянном токе катушка динамика обладает активным сопротивлением, так как она намотана из медного провода. На низких частотах в дело вступает , которое вычисляется по формуле:

где

Х L - сопротивление катушки, Ом

П - постоянная и равна приблизительно 3,14

F - частота, Гц

L - индуктивность, Гн

Так как сабвуфер предназначен именно для низких частот, значит, последовательно с активным сопротивлением самой катушки добавляется реактивное сопротивление этой же самой катушки. Но в нашем опыте мы это учитывать не будем, так как не знаем индуктивность нашего воображаемого динамика. Поэтому, все расчеты в опыте берем с приличной погрешностью.

Как утверждает китаец, при нагрузке на фильтр динамика в 4 Ома, его полоса пропускания будет доходить до 150 Герц. Проверяем так ли это:


Его АЧХ


Как вы видите, частота среза на уровне в -3 дБ составила почти 150 Герц.

Нагружаем наш фильтр динамиком в 8 Ом


Частота среза составила 213 Гц.


В описании на товар утверждалось, что частота среза на 8-омный саб составит 300 Гц. Думаю, можно поверить китайцам, так как во-первых, все данные приближенные, а во-вторых, симуляция в программах далека от реальности. Но суть опыта была не в этом. Как мы видим на АЧХ, нагружая фильтр сопротивлением большего номинала, частота среза сдвигается в большую сторону. Это также надо учитывать при проектировании фильтров.

Полосовые фильтры

В прошлой статье мы с вами рассматривали один из примеров полосового фильтра


Вот так выглядит АЧХ этого фильтра.


Особенность таких фильтров такова, что они имеют две частоты среза. Определяются они также на уровне в -3дБ или на уровне в 0,707 от максимального значения коэффициента передачи, а еще точнее K u max /√2.


Полосовые резонансные фильтры

Если нам надо выделить какую-то узкую полосу частот, для этого применяются LC-резонанcные фильтры. Еще их часто называют избирательными. Давайте рассмотрим одного из их представителя.


LC-контур в сочетании с резистором R образует . Катушка и конденсатор в паре создают , который на частоте резонанса будет иметь очень высокий импеданс, в народе – обрыв цепи. В результате, на выходе цепи при резонансе будет значение входного напряжения, при условии если мы к выходу такого фильтра не цепляем никакой нагрузки.

АЧХ данного фильтра будет выглядеть примерно вот так:


Если взять по оси Y значение коэффициента передачи, то график АЧХ будет выглядеть следующим образом:


Постройте прямую на уровне в 0,707 и оцените полосу пропускания такого фильтра. Как вы можете заметить, она будет очень узкой. Коэффициент добротности Q позволяет оценить характеристику контура. Чем большее добротность, тем острее характеристика.

Как же определить добротность из графика? Для этого надо найти резонансную частоту по формуле:

где

f 0- это резонансная частота контура, Гц

L - индуктивность катушки, Гн

С - емкость конденсатора, Ф

Подставляем L=1mH и С=1uF и получаем для нашего контура резонансную частоту в 5033 Гц.

Теперь надо определить полосу пропускания нашего фильтра. Делается это как обычно на уровне в -3 дБ, если вертикальная шкала в , либо на уровне в 0,707, если шкала линейная.

Давайте увеличим верхушку нашей АЧХ и найдем две частоты среза.


f 1 = 4839 Гц


f 2 = 5233 Гц

Следовательно, полоса пропускания Δf=f 2 – f 1 = 5233-4839=394 Гц

Ну и осталось найти добротность:

Q=5033/394=12,77

Режекторные фильтры

Другой разновидностью LC схем является последовательная LC-схема.


Ее АЧХ будет выглядеть примерно вот так:


Конечно, этот недостаток можно устранить, поместив катушку индуктивности в экран из мю-металла, но от этого она станет только дороже. Проектировщики всячески пытаются избежать катушек индуктивности, если это возможно. Но, благодаря прогрессу, в настоящее время катушки не используются в активных фильтрах, построенных на ОУ.

Заключение

В радиоэлектронике фильтры находят множество применений. Например, в области электросвязи полосовые фильтры используются в диапазоне звуковой частоты (20 Гц-20 КГц). В системах сбора данных используются фильтры низких частот (ФНЧ). В музыкальной аппаратуре фильтры подавляют шумы, выделяют определенную группу частот для соответствующих динамиков, а также могут изменять звучание. В системах источников питания фильтры часто используются для подавления частот, близких к частоте сети 50/60 Герц. В промышленности фильтры применяются для компенсации косинуса фи, а также используются как фильтры гармоник.

Резюме

Электрические фильтры используются для выделения какого-либо диапазона частота и глушат ненужные частоты.

Фильтры, построенные на пассивных радиоэлементах, таких как резисторы, катушки индуктивности и конденсаторы, называют пассивными фильтрами. Фильтры в которых имеется активный радиоэлемент, типа транзистора или ОУ, называются активными фильтрами.

Чем круче спад характеристики АЧХ, тем лучше избирательные свойства фильтра.

При участии JEER

Случайные статьи

Вверх