Бортовой светодиодный вольтметр. Вольтметры-индикаторы на светодиодах Светодиодный вольтметр своими руками схемы

Данный вольтметр предназначен для дискретной индикации уровня напряжения. Индикация осуществляется линейкой, состоящей из нескольких планарных (в моём варианте) светодиодов. Конечно точность у него не слишком высокая, зато сразу наглядно показывается состояние батареи или аккумулятора. Собственно оно и делалось по просьбе товарища для контроля АКБ в автомобиле. Электрическая схема увеличивается по клику.

Основа прибора — микроконтроллер (печатка и прошивка в архиве). Светодиоды подключены к его выходам через токоограничительные резисторы R5 — R12, которыми выставляется желаемая яркость свечения линейки светодиодов. Питается схема светодиодного вольтметра через стабилизатор +5В, который можно заменить или вообще удалить, если источник питания — батарейки с нужным напряжением.

Диапазон работы индикатора устанавливается при помощи кнопок MIN и MAX. Для установки минимального и максимального уровня измеряемого напряжения необходимо:

— Выставить на входе нижний порог напряжения, при котором все светодиоды должны быть потушены.
— Нажать на кнопку MIN. Все светодиоды должны погаснуть.
— Выставить верхний порог напряжения, при котором все светодиоды светятся.
— Нажать на кнопку MAX. Все светодиоды должны зажечься.
— Если же верхний предел оказался ниже нижнего, то индицируется состояние ошибки – включены светодиоды через один.

При работе с различными электронными изделиями возникает потребность измерять режимы или распределение переменных напряжений на отдельных элементах схемы. Обычные мультиметры, включённые в режиме AC, могут фиксировать лишь большие значения этого параметра с высокой степенью погрешности. При необходимости снятия небольших по величине показаний желательно иметь милливольтметр переменного тока, позволяющий производить измерения с точностью до милливольта.

Для того чтобы изготовить цифровой вольтметр своими руками, нужен определённый опыт работы с электронными компонентами, а также умение хорошо управляться с электрическим паяльником. Лишь в этом случае можно быть уверенным в успехе сборочных операций, осуществляемых самостоятельно в домашних условиях.

Вольтметр на основе микропроцессора

Выбор деталей

Перед тем, как сделать вольтметр, специалисты рекомендуют тщательно проработать все предлагаемые в различных источниках варианты. Основное требование при таком отборе – предельная простота схемы и возможность измерять переменные напряжения с точностью до 0,1 Вольта.

Анализ множества схемных решений показал, что для самостоятельного изготовления цифрового вольтметра целесообразнее всего воспользоваться программируемым микропроцессором типа РІС16F676. Тем, кто плохо знаком с техникой перепрограммирования этих чипов, желательно приобретать микросхему с уже готовой прошивкой под самодельный вольтметр.

Особое внимание при закупке деталей следует уделить выбору подходящего индикаторного элемента на светодиодных сегментах (вариант типового стрелочного амперметра в этом случае полностью исключён). При этом предпочтение следует отдать прибору с общим катодом, поскольку число компонентов схемы в этом случае заметно сокращается..

Дополнительная информация. В качестве дискретных комплектующих изделий можно использовать обычные покупные радиоэлементы (резисторы, диоды и конденсаторы).

После приобретения всех необходимых деталей следует перейти к разводке схемы вольтметра (изготовлению его печатной платы).

Подготовка платы

Перед изготовлением печатной платы нужно внимательно изучить схему электронного измерителя, учтя все имеющиеся на ней компоненты и разместив их на удобном для распайки месте.

Важно! При наличии свободных средств можно заказать изготовление такой платы в специализированной мастерской. Качество её исполнения в этом случае будет, несомненно, выше.

После того, как плата готова, нужно «набить» её, то есть разместить на своих местах все электронные компоненты (включая микропроцессор), а затем запаять их низкотемпературным припоем. Тугоплавкие составы в этой ситуации не подойдут, поскольку для их разогрева потребуются высокие температуры. Так как в собираемом устройстве все элементы миниатюрные, то их перегрев крайне нежелателен.

Блок питания (БП)

Для того чтобы будущий вольтметр нормально функционировал, ему потребуется отдельный или встроенный блок питания постоянного тока. Этот модуль собирается по классической схеме и рассчитан на выходное напряжение 5 Вольт. Что касается токовой составляющей этого устройства, определяющей его расчетную мощность, то для питания вольтметра вполне достаточно половины ампера.

Исходя из этих данных, подготавливаем сами (или отдаём для изготовления в специализированную мастерскую) печатную плату под БП.

Обратите внимание! Рациональнее будет сразу подготовить обе платы (для самого вольтметра и для блока питания), не разнося эти процедуры по времени.

При самостоятельном изготовлении это позволит за один раз выполнять сразу несколько однотипных операций, а именно:

  • Вырезка из листов стеклотекстолита нужных по размеру заготовок и их зачистка;
  • Изготовление фотошаблона для каждой из них с его последующим нанесением;
  • Травление этих плат в растворе хлористого железа;
  • Набивка их радиодеталями;
  • Пайка всех размещённых компонентов.

В случае, когда платы отправляются для изготовления на фирменном оборудовании, их одновременная подготовка также позволит выгадать как по цене, так и по времени.

Сборка и настройка

При сборке вольтметра важно следить за правильностью установки самого микропроцессора (он должен быть уже запрограммирован). Для этого необходимо найти на корпусе маркировку его первой ножки и в соответствии с ней зафиксировать корпус изделия в посадочных отверстиях.

Важно! Лишь после того, как есть полная уверенность в правильности установки самой ответственной детали, можно переходить к её запаиванию («посадке на припой»).

Иногда для установки микросхемы рекомендуется впаивать в плату специальную панельку под неё, существенно упрощающую все рабочие и настроечные процедуры. Однако такой вариант выгоден лишь в том случае, если используемая панелька имеет качественное исполнение и обеспечивает надёжный контакт с ножками микросхемы.

После запайки микропроцессора можно набить и сразу же посадить на припой все остальные элементы электронной схемы. В процессе пайки следует руководствоваться следующими правилами:

  • Обязательно использовать активный флюс, способствующий хорошему растеканию жидкого припоя по всей посадочной площадке;
  • Стараться не задерживать жало на одном месте слишком долго, что исключает перегрев монтируемой детали;
  • По завершении пайки следует обязательно промыть печатную плату спиртом или любым другим растворителем.

В том случае, если при сборке платы не допущено никаких ошибок, схема должна заработать сразу после подключения к ней питания от внешнего источника стабилизированного напряжения 5 Вольт.

В заключение отметим, что собственный блок питания может быть подключен к готовому вольтметру по завершении его настройки и проверки, производимой по стандартной методике.

Видео

Это описание простого псвевдоаналогового вольтметра. Чтение измеренного значения происходит в виде точек светодиодов, стилизованных по типу стрелочнового датчика (хотя можно сделать и в виде LED линейки), но измерение происходит в цифровой форме, с использованием микроконтроллера. Вольтметр был создан в качестве дополнения к регулируемому блоку питания и был сделан из имеющихся под рукой радиоэлементов.

Схема принципиальная

Вольтметр состоит из двух частей: дисплея и измерительного модуля. Здесь обычный блок питания 5 В, МК Atmega8 с внешним источником опорного напряжения и регистры с 32 светодиодами.


Простой LED вольтметр — схема цифровой части

Основной диапазон измерений напряжения 1-32 В с разрешением 1 В, но решено ещё добавить автоматическое изменение диапазона на 0,1-3,2 В с разрешением 0,1 В.


Простой LED вольтметр — схема индикатора

Принцип действия основан на измерении напряжения с помощью двух преобразователей ADC0 и ADC1. Преобразователь ADC1 используется для определения диапазона измерения. Значение с этого датчика позволяет контролировать и добавлять резистор R9 через пин порта PC2 — образуя делитель 1:10, или отключая его. Для напряжений 0,1-3,2 V входное напряжение с CON2 подается через резистор R8 и поступает непосредственно на вход преобразователя ADC0. Если напряжение превысит заданное значение 3,3 вольта, то происходит переключение с низкого диапазона, (загорается зеленый диод LED33), на диапазон высокий.

Чтобы использовать такой вольтметр для блока питания 15 В, можно вместо делителя 1:10 установить делитель 1:4, что как раз и дает диапазон до 16 В с разрешением 0,5 В. Так как не каждому понравится переключение диапазонов, можно от этого отказаться и сделать один диапазон, соединив R9 непосредственно на массу, разрезав соединение с контактом PC2, ADC1 неиспользованный, вы можете также подключить к массе.

Диоды D2-D5 (вместе с R8, R10), представляют собой простейшую защиту преобразователей от подачи напряжения выше, чем напряжение питания Atmega, то есть 5 В. Конденсаторы C7, C8 дополнительно фильтруют расчетное напряжение. От внутреннего опорного напряжения Atmega отказались из-за его нестабильности. Образцовое напряжение выполнено на TL431. Значение опорного напряжения было зафиксировано на уровне 3,3 В. Точная настройка осуществляется с помощью потенциометра. Резисторы R3 и R4 позволяют подобрать диапазон регулировки напряжения потенциометра.

Питание аналоговой части МК также выполнено типично, с использованием дросселя 10 мкГн и конденсатора 100 нФ. Разделили массу цифровую и аналоговую.

Напряжение измерения передаются последовательно в регистры сигналами, маркированными как CLK, D и С., которые выводятся на разъем CON4.

Переключение режимов

Вольтметр может работать в режиме «светящейся точки» по стандартной настройке, или в режиме LED линейки. Изменение режима осуществляется изменением состояния контакта PB0, pin 14. Подключение к массе — это режим точечный, отсоединение этого контакта от массы — перевод в режим линейки.

Транзистор T1, R6, R7 и LED1 образуют простой источник тока, благодаря чему можно избежать необходимости применения отдельных резисторов для каждого из 32 светодиодов дисплея. Ток такого источника тока определяется номиналом R7. Вольтметр выполнен на односторонних печатных платах. Файлы и прошивка — .

Вольтметры, погрешность измерения которых превышает 4%, относятся к группе индикаторов. Вольтметры-индикаторы можно изготовить без применения дорогостоящих электроизмерительных приборов, используя светоизлучающие элементы — неоновые лампы, люминесцентные светодиоды и жидкокристаллические индикаторы.

Высокоомные вольтметры-индикаторы допускается использовать при ремонте большинства радиоаппаратов, так как разброс режимов по напряжению до 10%, как правило, не ухудшает технических характеристик устройства.

Для измерения напряжения на цифровых микросхемах, питающихся от источника тока напряжением +5 В, можно использовать вольтметр-индикатор, схема которого показана на рис. 1,а. Индикация напряжения осуществляется шестью светодиодами в пределах 1,2—4,2 В через каждые 0,6 В. Входное сопротивление индикатора не менее 20 кОм, напряжение питания +5 В, ток потребления при излучающих светодиодах — около 60 мА.

В индикаторе использован принцип работы, заключающийся в фиксации падений напряжений на переходах база —эмиттер транзисторов и прямых падений напряжений на диодах, которые равны 0,6 В на каждом элементе.

Индикатор собран на транзисторах VT1—VT7 и светодиодах HL1—HL6, Для увеличения входного сопротивления прибора предназначен транзистор VT1, включенный по схеме эмиттерного повторителя. При напряжении на входе менее 1,2 В транзисторы VT1 —VT7 закрыты и светодиоды HL1—HL6 погашены. Если напряжение на входе несколько превышает 1,2 В, образуется цепь тока через базы транзисторов VT1, VT2 и светодиод HL1 загорается. Дальнейшее повышение напряжения на 0,6 В приводит к образованию дополнительной цепи тока через диод VD1, резистор R3 и переход база — эмиттер транзистора VT3 и включению светодиода HL2. Аналогично включаются и остальные светодиоды при повышении напряжения на входе до 4,2 В.

Если во входную цепь подключить стабилитрон в стабилизирующем направлении, индикатором можно будет измерять напряжения, начиная с напряжения стабилизации стабилитрона. Таким индикатором удобно контролировать напряжение аккумуляторной батареи. При увеличении напряжения питания необходимо использовать резистор R8 на большее сопротивление.

Для индикатора можно применять транзисторы КТ315 (любые из серии) со статическим коэффициентом передачи тока 50… 60, диоды из серии КД102, кд103.
Вольтметр-индикатор собран в пластмассовом корпусе авторучки (рис. 1,6), внутренняя часть которой удалена, и на ее место установлена монтажная плата, вырезанная из стеклотекстолита толщиной 1 мм. В нижней части платы помещен контакт из спиральной пружины, касающийся измерительной иглы, закрепленной с помощью эпоксидного компаунда в торце корпуса. Выше пружинного контакта на плате установлены шесть светодиодов и остальные элементы индикатора. Верхняя часть монтажной платы заканчивается штырем из винта МЗ длиной 25 мм, на которой в нерабочем положении индикатора намотаны провода марки МГТФ-0,12 для подключения питания. Для удобства включения индикатора к проводам питания припаяны пружинные миниатюрные зажимы (рис. 1,б).

Соединение элементов выполняют проводом ПЭЛШО 0,12 или ПЭВ-2 0,12. После проверки работоспособности индикатора монтажную плату со стороны выводов элементов следует залить эпоксидным компаундом. В корпусе напротив светодиодов нужно просверлить отверстие диаметром 2,5 мм, возле которых выгравировать цифры, соответствующие значениям напряжения свечения светодиодов.

Налаживание индикатора сводится к подборке светодиодов с одинаковой яркостью свечения.

Для уменьшения времени ремонта сложной электронной аппаратуры целесообразно при ее разработке или модернизации предусмотреть индикатор режимов работы, с помощью которого можно оперативно проверить режимы по постоянному току всех узлов устройства. Схема одного из вариантов такого индикатора показана на рис. 2. Входной ток индикатора 0,1 мА, напряжение питания 10 В, ток потребления от источника питания не более 10 мА.

Устройство содержит измерительный мост на резисторах R4—R6 и транзисторе VT1, в диагональ которого включены светодиоды HL1 и HL2. При балансе моста, когда сопротивление транзистора эквивалентно 1 кОм, напряжение на светодиодах отсутствует и они погашены. Если контролируемое напряжение превышает установленное значение, транзистор VT1 будет открыт и светодиод HL2 светится. Пониженное контролируемое напряжение приводит к закрыванию транзистора VT1 н свечению светодиода HL1.

Для уменьшения размеров индикатора вместо переключателя SA1 можно использовать фольгированные проводники платы, форма которых должна соответствовать показанной на схеме. При контроле режимов работы концом отвертки поочередно замыкают проводники, соединенные с входными резисторами R1—Rn с проводником, подключенным к базе транзистора. Входные резисторы рассчитывают исходя из значения контролируемого напряжения — 10 кОм на 1 В, при условии, что статический коэффициент передачи тока транзистора VT1 равен 50. В этом случае устанавливается баланс измерительного моста и светодиоды погашены.

Для индикатора следует применять светодиоды, которые дают достаточную яркость свечения при токе 5 мА.

Дробница Н. А. 60 схем радиолюбительских устройств

Related Posts

Устройство, о котором пойдет речь, собрано на основе специализиро­ванной микросхемы записи/воспроизве­дения голосовых сообщений ISD1620BP семейства ChipCorder фирмы Nuvoton . В отличие от других микросхем этого семейства, использованных в кон­струкциях…….

Устройство, предложенное автором, позволяет реализовать ряд игр, развивающих логическое мышление, координацию дви­жений и быстроту реакции, память и внимание. Его основу соста­вляют группы светодиодов, образующие два семиэлементных индикатора. Схема игрового устройства…….

Случайные статьи

Вверх