Что такое кварцевый резонатор и как он работает? Тестер кварцевых резонаторов на микроконтроллере Как замерить частоту кварца.

13.11.10

14793 4.4

В радиолюбительской практике довольно часто возникает необходимость в управляемом генераторе высокой частоты , например для проверки пьезокерамических и кварцевых резонаторов. В статье будет рассмотрена схема генератора высокой частоты с регулируемой частотой до 80 МГц. Ранее мы уже писали о том, как проверить кварцевый резонатор , теперь вашему вниманию предлагается еще один вариант устройства для проверки кварцевых резонаторов. Отличия в схемах конечно же есть, есть и разница в функциональности, одним словом выбирать вам.

Схема устройства:

В качестве задающего генератора выступает цифровая интегральная микросхема DD1 типа КР531ГГ1. По сути, микросхема представляет из себя два управляемых генератора. Рабочая частота этих управляемых генераторов определяется подключенными к выводам С1 и С2 генератора кварцевыми или пьезокерамическими резонаторами, конденсаторами. В рассматриваемой схеме генератора высокой частоты задействован только первый генератор микросхемы. Для облегчения запуска генератора с пьезокерамическими резонаторами, рабочая частота которых менее 4 МГц, параллельно с ним к выводам С1, С2 подключается резистор R1.

Возбуждение проверяемых резонаторов будет происходить на частоте основного резонанса, то есть на частоте первой гармоники. Необходимо это учитывать при выполнении проверки резонаторов , которые предназначены для работы в радиопередающих и радиоприемных устройствах. Для примера, гармониковые кварцы с рабочей частотой 27 МГц (третья гармоника) будут входить в возбуждение соответственно на частоте 9 МГц. Делитель частоты на 2 и 4 собран на микросхеме DD2.

Сигнал высокой частоты с выхода F задающего генератора DD1.1 через токоограничивающий резистор R2 поступает на вход С (вывод 3) триггера DD2.1, а в последствии деленный на 2, с выхода этого D-триггера сигнал с уже вдвое меньшей частотой, чем частота задающего генератора попадает на второй триггер микросхемы DD2.1, который включен аналогичным образом. Таким образом, на выходе делителя частоты мы получаем сигнал частота, которого в 4 раза меньше, чем частота задающего генератора.

О том, что проверяемый резонатор возбуждается сигнализирует светодиод HL2. В качестве буферных элементов используется микросхема DD3. Что позволяет повысить стабильность работы DD1, DD2, устранив влияние подключенной нагрузки. К генератору высокой частоты для мониторинга можно подключить частотомер, который способен производить измерения сигналов частота которых не меньше 80 МГц. Можно также на подключенный частотомер подавать сигналы от задающего генератора DD1, или уже с делителя с частотой в 2 или 4 раза меньшей, что может быть полезно, когда применяется выносной щуп частотомера и соединительный кабель, имеющий недостаточную полосу пропускания.

Питание примененных в генераторе интегральных цифровых микросхем осуществляется от источника стабилизированного напряжения, собранного на стабилизаторе DA1. В целом генератор довольно экономичный, так при работе генератора на частоте 50 МГц он потребляет по цепи питания ток около 100 мА. О наличии напряжения питания сигнализирует светодиод HL1. Для защиты устройства от подачи питания обратной полярности служит диод VD1.

Внешний вид готовой платы:

В первом варианте готового устройства монтаж велся навесным способом, соединение производилось тонким монтажным проводником, а весь слой фольги был использован как общий провод. Следует быть очень внимательным при разводке сигнальных цепей и цепей питания, так как высокочастотные микросхемы серий КР531, 74F при неудачно выполненном монтаже способны генерировать помехи с довольно широким спектром частот.

Детали. Взамен микросхемы КР531ГГ1 можно использовать КР1531ГГ1, К531ГГ1П. Вместо импортной микросхемы MC74F74N можно использовать любую из серии 74F74N или заменить отечественной КР531ТМ2. Если внести небольшие изменения в принципиальную схему, можно взамен этой микросхемы использовать делитель на 10, как вариант, собранный на микросхеме КР531ИЕ9. Микросхему MC74F00N можно заменить на любую из серии 74F00N или на отечественный аналог КР531ЛАЗ, КР1531ЛАЗ. Следует отметить, что при применении отечественных микросхем ток, потребляемый устройством, может незначительно возрасти.

Если возникнут сложности в приобретении таких микросхем, вместо DD2 и DD3 можно временно установить подходящие микросхемы серии КР1533, но надо иметь ввиду, что диапазон частот кварцевого резонатора при этом снизится до 50...70 МГц. Стабилизатор на напряжение +5 В типа L7805ACV может быть заменен на любой из серии 7805 или отечественную интегральную микросхему КР142ЕН5А или КР142ЕН5В. Следует учесть, что некоторые стабилизаторы напряжения имеют нижнюю границу минимального напряжения от 7 В до 8 В.

Следуя рекомендациям микросхему стабилизатора напряжения следует устанавливать на небольшой теплоотвод. Вместо диода 1N4001 можно использовать аналогичный из серий КД243, КД226. Диоды 1N4148 могут быть заменены на диоды серий КД409, КД503, 2Д419. К светодиодам особых требований не предъявляется, подойду светодиоды общего применения любого типа. Конденсаторы оксидного типа К53-19, К53-30, К50-35 или их импортные аналоги. Неполярные - керамические конденсаторы К10-17 или аналогичные импортного производства. Можно использовать любые малогабаритные резисторы, например самые распространенные - МЛТ.

Для того, чтобы можно было проверять резонаторы с разным диаметром контактов следует предусмотреть две различные панельки. Длина проводов от выводов С1, С2 микросхемы DD1 должна быть минимальной. Для изменения диапазона рабочих частот генератора от 760 кГц до 12МГц вместо кварцевого резонатора ZQ1 к панелькам необходимо подсоединить конденсатор переменной емкости 20 - 540 пФ. Кроме этого высокочастотный генератор можно доработать, если вместо кварцевого резонатора ZQ1 будет установлен частотозадающий конденсатор, выход F DD1.2 соединить с входом Uc (вывод 2) или Uд (вывод 3) DD1.1, вход Е DD1.2 необходимо соединить с общим проводом, а к выводам С1 и С2 DD1.2 подсоединить конденсатор емкостью 0,22 мкФ.

Генератор DD1.2, после таких доработок, будет работать с частотой 2 кГц, а на выходе 7 DD1, получим частотно-модулированный сигнал. Кроме сказанного, на входы Uд и Uc одновременно можно подать противофазные модулирующие сигналы, как вариант, с выхода 6 инвертора DD3.1 и выхода 7 DD1. А вот для уменьшения девиации частоты эти модулирующие сигналы следует подавать через подстроечные резисторы 220...470 Ом. Кроме кварцевых или пьезокерамических резонаторов можно подключать и пьезокерамические фильтры. Высокочастотный генератор можно использовать помимо проверки кварцевых резонаторов и, например как калибратор, генератор звуковых эффектов, микропередатчик, устройство для измерения емкости конденсаторов.

Кварцевый резонатор как проверить? Проверка кварцевых резонаторов

Колебаниям уделяется одна из важнейших ролей в современном мире. Так, даже существует так именуемая теория струн, которая утверждает, что всё вокруг нас - это просто волны. Но есть и другие варианты использования данных познаний, и одна из их - это кварцевый резонатор. Так бывает, что неважно какая техника временами выходит из строя, и они здесь не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как следует?

О кварцевом резонаторе замолвим слово

Кварцевым резонатором именуют аналог колебательного контура, базирующегося на индуктивности и ёмкости. Но меж ними есть разница в пользу первого. Как понятно, для свойства колебательного контура употребляют понятие добротности. В резонаторе на базе кварцев она добивается очень больших значений - в границах 10 5 -10 7 . К тому же он более эффективен для всей схемы при изменении температуры, что сказывается на большем сроке службы таких деталей, как конденсаторы. Обозначение кварцевых резонаторов на схеме осуществляется в виде вертикально размещенного прямоугольника, который с обеих сторон «зажат» пластинами. Снаружи на чертежах они напоминают гибрид конденсатора и резистора.

Как работает кварцевый резонатор?

Из кристалла кварца вырезается пластинка, кольцо либо брусок. На него наносится как минимум два электрода, которые являются проводящими полосами. Пластинка закрепляется и имеет свою свою резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг либо изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна либо очень близка к своим значениям, то требуется наименьшее количество энергии при значимых различиях для поддержания функционирования. Сейчас можно перебегать к свету главной препядствия, из-за чего, фактически, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 метода, о которых и будет поведано.

Способ № 1

Читайте так же

Тут транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р). Он фильтрует постоянную составляющую, а потом сам импульс передаёт на аналоговый частотомер, который построен на 2-ух диодиках Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все другие элементы служат для стабильности работы схемы и чтоб ничего не перегорело. Зависимо от установленной частоты может изменяться напряжение, которое есть на конденсаторе С4. Это достаточно ориентировочный метод и его преимущество - легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но есть определённые ограничения: пробовать её на данной схеме следует исключительно в тех случаях, если она находится в ориентировочных рамках от 3-х до 10 МГц. Проверка кварцевых резонаторов , что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но дальше подвергнется рассмотрению чертеж, у которого спектр — 1-10 МГц.

Как проверить кварцевый резонатор

Обычная схема для проверки кварцевых резонаторов, а если добавить в схему мультиметр с возможностью измеря…

Проверка кварцевых резонаторов

Обычная схема для проверки работоспособности кварцевых резонаторов, а так же возможность проверки частоты…

Способ № 2

Для роста точности можно к выходу генератора подключить частотомер либо осциллограф. Тогда можно будет высчитать разыскиваемый показатель, используя фигуры Лиссажу. Но имейте в виду, что в таких случаях кварц возбуждается, при этом как на гармониках, так и на основной частоте, что, в свою очередь, может дать существенное отклонение. Поглядите на приведённые схемы (эту и предшествующую). Видите ли, есть различные методы находить частоту, и здесь придётся экспериментировать. Главное - соблюдайте технику безопасности.

Проверка сразу двух кварцевых резонаторов

Читайте так же

Данная схема дозволит найти, работоспособны ли два кварцевых резистора, которые работают в рамках от 1-го до 10 МГц. Также благодаря ей можно выяснить сигналы толчков, которые идут меж частотами. Потому вы можете не только лишь найти работоспособность, да и подобрать кварцевые резисторы, которые более подходят друг дружке по своим показателям. Схема реализована с 2-мя задающими генераторами. 1-ый из их работает с кварцевым резонатором ZQ1 и реализован на транзисторе КТ315Б. Чтоб проверить работоспособность, напряжение на выходе должно быть больше 1,2 В, и следует надавить на кнопку SB1. Обозначенный показатель соответствует сигналу высочайшего уровня и логической единице. Зависимо от кварцевого резонатора может быть увеличено нужное значение для проверки (можно напряжение каждую проверку увеличивать на 0,1А-0,2В к рекомендованному в официальной аннотации по использованию механизма). При всем этом выход DD1.2 будет иметь 1, а DD1.3 — 0. Также, сообщая о работе кварцевого генератора, будет пылать светодиод HL1. 2-ой механизм работает аналогично, и о нём будет докладывать HL2. Если их запустить сразу, то ещё будет пылать светодиод HL4.

Когда сравниваются частоты 2-ух генераторов, то их выходные сигналы с DD1.2 и DD1.5 направляются на DD2.1 DD2.2. На выходах вторых инверторов схема получает сигнал с широтно-импульсной модуляцией, чтоб потом сопоставить характеристики. Узреть зрительно это можно при помощи мерцания светодиода HL4. Для улучшения точности добавляют частотомер либо осциллограф. Если реальные характеристики отличаются на килогерцы, то для определения более частотного кварца нажмите на кнопку SB2. Тогда 1-ый резонатор уменьшит свои значения, и тон биений световых сигналов будет меньше. Тогда можно уверенно сказать, что ZQ1 более частотный, ежели ZQ2.

При проверке всегда:

  1. Прочитайте аннотацию, которую имеет кварцевый резонатор;
  2. Придерживайтесь техники безопасности.

Возможные причины выхода из строя

Существует достаточно много методов вывести собственный кварцевый резонатор из строя. С некими самыми пользующимися популярностью стоит ознакомиться, чтоб в дальнейшем избежать каких-либо заморочек:

  1. Падения с высоты. Самая пользующаяся популярностью причина. Помните: всегда нужно содержать рабочее место в полном порядке и смотреть за своими действиями.
  2. Присутствие неизменного напряжения. В целом кварцевые резонаторы не страшатся его. Но прецеденты были. Для проверки работоспособности включите поочередно конденсатор на 1000 мФ - этот шаг вернет его в строй либо дозволит избежать негативных последствий.
  3. Очень большая амплитуда сигнала. Решить данную делему можно различными методами:
  • Увести частоту генерации мало в сторону, чтоб она отличалась от основного показателя механического резонанса кварца. Это более непростой вариант.
  • Снизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
  • Проверить, вышел ли кварцевый резонатор вправду из строя. Так, предпосылкой падения активности может быть флюс либо посторонние частички (нужно в таком случае его отменно очистить). Также может быть, что очень интенсивно эксплуатировалась изоляция, и она растеряла свои характеристики. Для контрольной проверки по этому пт можно на КТ315 спаять «трехточку» и проверить осцом (сразу можно сопоставить активность).

Предлагаем к рассмотрению очередное устройство, которое было сделано несколько дней назад. Это тестер кварцевых резонаторов для проверки эффективности (работоспособности) кварцев, используемых во многих приборах, хотя бы в электронных часах. Вся система предельно простая, но именно эта простота и требовалась.

Тестер состоит из нескольких электронных компонентов:

  • 2 транзисторы NPN BC547C
  • 2 конденсаторы 10nF
  • 2 конденсаторы 220pF
  • 2 резисторы 1к
  • 1 резистор 3k3
  • 1 резистор 47k
  • 1 светодиод

Питание от 6 батареек AA 1.5 В (или Кроны). Корпус изготовлен из коробочки от конфет и оклеен цветной лентой.

Принципиальная схема тестера кварцев

Схема выглядит следующим образом:

Второй вариант схемы:

Для проверки вставляем в SN1 кварц, после чего переключаем переключатель в положение ON. Если светодиод горит ярким светом - кварцевый резонатор исправен. А если после включения светодиод не горит или горит очень слабо, значит мы имеем дело с поврежденным радиоэлементом.

Конечно эта схема скорее для начинающих, представляющая из себя простой кварцевый тестер без определения частоты колебаний. T1 и XT сформировали генератор. C1 и C2 - делитель напряжения тока для генератора. Если кварц живой, то генератор будет работать хорошо, и его выходное напряжение будет выпрямлено элементами С3, С4, D1 и D2, транзистор Т2 откроется и светодиод зажгётся. Тестер подходит для тестирования кварцев 100 кГц - 30 МГц.

Современная цифровая техника требует высокой точности, поэтому совсем неудивительно, что практически любое цифровое устройство, какое бы не попалось сегодня на глаза обывателю, содержит внутри кварцевый резонатор.

Кварцевые резонаторы на различные частоты необходимы в качестве надежных и стабильных источников гармонических колебаний, чтобы цифровой микроконтроллер мог бы опереться на эталонную частоту, и оперировать с ней в дальнейшем, в процессе работы цифрового устройства. Таким образом, кварцевый резонатор — это надежная замена колебательному LC-контуру.

Если рассмотреть простой колебательный контур, состоящий из и , то быстро выяснится, что добротность такого контура в схеме не превысит 300, к тому же емкость конденсатора будет плавать в зависимости от температуры окружающей среды, то же самое произойдет и с индуктивностью.

Не даром есть у конденсаторов и катушек такие параметры как ТКЕ — температурный коэффициент емкости и ТКИ — температурный коэффициент индуктивности, показывающие, насколько изменяются главные параметры этих компонентов с изменением их температуры.

В отличие от колебательных контуров, резонаторы на базе кварца обладают недостижимой для колебательных контуров добротностью, которая измеряется значениями от 10000 до 10000000, причем о температурной стабильности кварцевых резонаторов речи не идет, ведь частота остается постоянной при любом значении температуры, как правило из диапазона от -40°C до +70°C.

Так, благодаря высоким показателям температурной стабильности и добротности, кварцевые резонаторы применяются всюду в радиотехнике и цифровой электронике.

Для задания тактовой частоты, ему всегда необходим генератор тактовой частоты, на который он мог бы надежно опереться, и генератор этот всегда нужен высокочастотный и при том высокоточный. Здесь то и приходит на помощь кварцевый резонатор. Конечно, в некоторых применениях можно обойтись пьезокерамическими резонаторами с добротностью 1000, и таких резонаторов достаточно для электронных игрушек и бытовых радиоприемников, но для более точных устройств необходим кварц.

В основе работы кварцевого резонатора — , возникающий на кварцевой пластинке. Кварц представляет собой полиморфную модификацию диоксида кремния SiO2, и встречается в природе в виде кристаллов и гальки. В свободном виде в земной коре кварца около 12%, кроме того в виде смесей в составе других минералов также содержится кварц, и в общем в земной коре более 60% кварца (массовая доля).

Для создания резонаторов подходит низкотемпературный кварц, обладающий ярко выраженными пьезоэлектрическими свойствами. Химически кварц весьма устойчив, и растворить его можно лишь в гидрофторидной кислоте. По твердости кварц превосходит опал, но до алмаза не дотягивает.

При изготовлении кварцевой пластинки, от кристалла кварца под строго заданным углом вырезают кусочек. В зависимости от угла среза полученная кварцевая пластинка будет отличаться по своим электромеханическим свойствам.

Так получается колебательная система, обладающая собственной резонансной частотой, и кварцевый резонатор, полученный таким образом, обладает собственной резонансной частотой, определяемой электромеханическими параметрами.

Теперь если приложить к металлическим электродам пластики переменное напряжение данной резонансной частоты, то проявится явление резонанса, и амплитуда гармонических колебаний пластинки весьма значительно возрастет. При этом сопротивление резонатора сильно понизится, то есть процесс аналогичен происходящему в последовательном колебательном контуре. В силу высокой добротности такого «колебательного контура», энергетические потери при его возбуждении на резонансной частоте пренебрежимо малы.

На эквивалентной схеме: C2 - статическая электроемкость пластинок с держателями, L - индуктивность, С1 — емкость, R - сопротивление, отражающие электромеханические свойства установленной пластинки кварца. Если убрать монтажные элементы, останется последовательный LC-контур.

В процессе монтажа на печатную плату, кварцевый резонатор нельзя перегревать, ведь конструкция его довольно хрупка, и перегрев может привести к деформации электродов и держателя, что непременно отразится на работе резонатора в готовом устройстве. Если же разогреть кварц до 5730°C, он вовсе утратит свои пьезоэлектрические свойства, но, к счастью, нагреть элемент паяльником до такой температуры невозможно.

Обозначение кварцевого резонатора на схеме похоже на обозначение конденсатора с прямоугольником между пластинами (кварцевая пластинка), и с надписью «ZQ» или «Z».

Часто причиной повреждения кварцевого резонатора является падение или сильный удар устройства, в котором он установлен, и тогда необходимо заменить резонатор на новый с той же резонансной частотой. Такие повреждения свойственны малогабаритным приборам, которые легко уронить. Однако, по статистике, подобные повреждения кварцевых резонаторов встречаются крайне редко, и чаще неисправность прибора оказывается вызвана иной причиной.

Чтобы проверить кварцевый резонатор на исправность, можно собрать небольшой пробник, который поможет не только убедиться в работоспособности резонатора, но и увидеть его резонансную частоту. Схема пробника представляет собой типичную схему кварцевого генератора на одном транзисторе.

Включив резонатор между базой и минусом (можно через защитный конденсатор на случай короткого замыкания в резонаторе), остается измерить частотомером резонансную частоту. Эта схема подойдет и для предварительной настройки колебательных контуров.

Когда схема включена, исправный резонатор станет способствовать генерации колебаний, и на эмиттере транзистора можно будет наблюдать переменное напряжение, частота которого будет соответствовать основной резонансной частоте тестируемого кварцевого резонатора.

Подключив к выходу пробника частотомер, пользователь сможет наблюдать эту резонансную частоту. Если частота стабильна, если небольшой нагрев резонатора поднесенным паяльником не приводит к сильному уплыванию частоты, то резонатор исправен. Если же генерации не будет, или частота будет плавать или окажется совсем другой, чем должна быть для тестируемого компонента, то резонатор неисправен, и его следует заменить.

Данный пробник удобен и для предварительной настройки колебательных контуров, в этом случае конденсатор C1 обязателен, хотя при проверке резонаторов его можно из схемы исключить. Контур просто подключается вместо резонатора, и схема начинает генерировать колебания аналогичным образом.

Пробник собранный по приведенной схеме замечательно работает на частотах от 15 до 20 МГц. Для иных диапазонов вы всегда можете поискать схемы в интернете, благо их там много, как на дискретных компонентах, так и на микросхеме.

Что такое генератор? Генератор – это по сути устройство, которое преобразует один вид энергии в другой. В электронике очень часто можно услышать словосочетание “генератор электрической энергии, генератор частоты , ” и тд.

Кварцевый генератор представляет из себя генератор частоты и имеет в своем составе . В основном кварцевые генераторы бывают двух видов:

те, которые могут выдавать синусоидальный сигнал

и те, которые выдают прямоугольный сигнал


Чаще всего в электронике используется прямоугольный сигнал

Схема Пирса

Для того, чтобы возбудить кварц на частоте резонанса, нам надо собрать схему. Самая простая схема для возбуждения кварца – это классический генератор Пирса , который состоит всего лишь из одного полевого транзистора и небольшой обвязки из четырех радиоэлементов:


Пару слов о том как работает схема. В схеме есть положительная обратная связь и в ней начинают возникать автоколебания. Но что такое положительная обратная связь?

В школе всем вам ставили прививки на реакцию Манту, чтобы определить, если у вас тубик или нет. Через некоторое время приходили медсестры и линейкой замеряли вашу реакцию кожи на эту прививку


Когда ставили эту прививку, нельзя было чесать место укола. Но мне, тогда еще салаге, было по барабану. Как только я начинал тихонько чесать место укола, мне хотелось чесать еще больше)) И вот скорость руки, которая чесала прививку, у меня замерла на каком-то пике, потому что совершать колебания рукой у меня максимум получалось с частотой Герц в 15. Прививка набухала на пол руки)) И даже один раз меня водили сдавать кровь в подозрении на туберкулез, но как оказалось, не нашли. Оно и неудивительно;-).

Так что это я вам тут рассказываю хохмы из жизни? Дело в том, что эта чесотка прививки самая что ни на есть положительная обратная связь. То есть пока я ее не трогал, чесать не хотелось. Но как только тихонько почесал, стало чесаться больше и я стал чесать больше, и чесаться стало еще больше и тд. Если бы на мою руку не было физический ограничений, то наверняка, место прививки уже бы стерлось до мяса. Но я мог махать рукой только с какой-то максимальной частотой. Так вот, такой же принцип и у кварцевого генератора;-). Чуть подал импульс, и он начинает разгоняться и уже останавливается только на частоте параллельного резонанса;-). Скажем так, “физическое ограничение”.

Первым делом нам надо подобрать катушку индуктивности . Я взял тороидальный сердечник и намотал из провода МГТФ несколько витков


Весь процесс контролировал с помощью LC-метра , добиваясь номинала, как на схеме – 2,5 мГн. Если не доставало, прибавлял витки, если перебарщивал номинал, то убавлял. В результате добился вот такой индуктивности:


Его правильное название: .

Распиновка слева-направо: Сток – Исток – Затвор


Небольшое лирическое отступление.

Итак, кварцевый генератор мы собрали, напряжение подали, осталось только снять сигнал с выхода нашего самопального генератора. За дело берется цифровой осциллограф


Первым делом я взял кварц на самую большую частоту, которая у меня есть: 32 768 Мегагерц. Не путайте его с часовым кварцем (о нем пойдет речь ниже).


Внизу в левом углу осциллограф нам показывает частоту:


Как вы видите 32,77 Мегагерц. Главное, что наш кварц живой и схемка работает!

Давайте возьмем кварц с частотой 27 Мегагерц:


Показания у меня прыгали. Заскринил, что успел:


Частоту тоже более-менее показал верно.

Ну и аналогично проверяем все остальные кварцы, которые у меня есть.

Вот осциллограмма кварца на 16 Мегагерц:


Осциллограф показал частоту ровнехонько 16 Мегагерц.

Здесь поставил кварц на 6 Мегагерц:


Ровно 6 Мегагерц

На 4 Мегагерца:


Все ОК.

Ну и возьмем еще советский на 1 Мегагерц. Вот так он выглядит:


Сверху написано 1000 Килогерц = 1МегаГерц;-)


Смотрим осциллограмму:


Рабочий!

При большом желании можно даже замерять частоту китайским генератором-частотомером :


400 Герц погрешность для старенького советского кварца не очень и много. Но лучше, конечно, воспользоваться нормальным профессиональным частотомером;-)

Часовой кварц

С часовым кварцем кварцевый генератор по схеме Пирса отказался работать.


“Что еще за часовой кварц?” – спросите вы. Часовой кварц – это кварц с частотой в 32 768 Герц. Почему на нем такая странная частота? Дело все в том, что 32 768 это и есть 2 15 . Такой кварц работает в паре с 15-разрядной микросхемой-счетчиком. Это наша микросхема К176ИЕ5.

Принцип работы этой микросхемы такой: п осле того, как она сосчитает 32 768 импульсов, на одной из ножек она выдает импульс. Этот импульс на ножке с кварцевым резонатором на 32 768 Герц появляется ровно один раз в секунду . А как вы помните, колебание один раз в секунду – это и есть 1 Герц. То есть на этой ножке импульс будет выдаваться с частотой в 1 Герц. А раз это так, то почему бы не использовать это в часах? Отсюда и пошло название – .

В настоящее время в наручных часах и других мобильных гаджетах этот счетчик и кварцевый резонатор встроены в одну микросхему и обеспечивают не только счет секунд, но и целый ряд других функций, типа будильника, календаря и тд. Такие микросхемы называется RTC (R eal T ime C lock) или в переводе с буржуйского Часы Реального Времени.

Схема Пирса для прямоугольного сигнала

Итак, вернемся к схеме Пирса. Предыдущая схема Пирса генерирует синусоидальный сигнал

Но также есть видоизмененная схема Пирса для прямоугольного сигнала

А вот и она:

Номиналы некоторых радиоэлементов можно менять в достаточно широком диапазоне. Например, конденсаторы С1 и С2 могут быть в диапазоне от 10 и до 100 пФ. Тут правило такое: чем меньше частота кварца, тем меньше должна быть емкость конденсатора. Для часовых кварцев конденсаторы можно поставить номиналом в 15-18 пФ. Если кварц с частотой от 1 до 10 Мегагерц, то можно поставить 22-56 пФ. Если не хотите заморачиваться, то просто поставьте конденсаторы емкостью в 22 пФ. Точно не прогадаете.

Также небольшая фишка на заметку: меняя значение конденсатора С1 можно настраивать частоту резонанса в очень тонких пределах.

Резистор R1 можно менять от 1 и до 20 МОм, а R2 от нуля и до 100 кОм. Тут тоже есть правило: чем меньше частота кварца, тем больше значение этих резисторов и наоборот.

Максимальная частота кварца, которую можно вставить в схему, зависит от быстродействия инвертора КМОП. Я взял микросхему 74HC04. Она не слишком быстродействующая. Состоит из шести инверторов, но использовать мы будем только один инвертор:


Вот ее распиновка:

Подключив к этой схеме часовой кварц, осциллограф выдал вот такую осциллограмму:


Кстати, вам эта часть схемы ничего не напоминает?

Не эта ли часть схемы используется для тактирования микроконтроллеров AVR ?

Она самая! Просто недостающие элементы схемы уже есть в самом МК;-)

Плюсы кварцевых генераторов

Плюсы кварцевых генераторов частоты – это высокая частотная стабильность. В основном это 10 -5 – 10 -6 от номинала или, как часто говорят, ppm (от англ. parts per million) - частей на миллион, то есть одна миллионная или числом 10 -6 . Отклонение частоты в ту или иную сторону в кварцевом генераторе в основном связано с изменением температуры окружающей среды, а также со старением кварца. При старении кварца, частота кварцевого генератора стает чуточку меньше с каждым годом примерно на 1,8х10 -7 от номинала. Если, скажем, я взял кварц с частотой в 10 Мегагерц (10 000 000 Герц) и поставил его в схему, то за год его частота уйдет примерно на 2 Герца в минус;-) Думаю, вполне терпимо.

В настоящее время кварцевые генераторы выпускают в виде законченных модулей. Некоторые фирмы, производящие такие генераторы, достигают частотной стабильности до 10 -11 от номинала! Выглядят готовые модули примерно так:


или так

Такие модули кварцевых генераторов в основном имеют 4 вывода. Вот распиновка квадратного кварцевого генератора:

Давайте проверим один из них. На нем написано 1 МГц


Вот его вид сзади:


Вот его распиновка:

Подавая постоянное напряжение от 3,3 и до 5 Вольт плюсом на 8, а минусом на 4, с выхода 5 я получил чистый ровный красивый меандр с частотой, написанной на кварцевом генераторе, то бишь 1 Мегагерц, с очень небольшими выбросами.


Ну прям загляденье!

Да и китайский генератор-частотомер показал точную частоту:


Отсюда делаем вывод: лучше купить готовый кварцевый генератор, чем самому убивать кучу времени и нервов на наладку схемы Пирса. Схема Пирса будет пригодна для проверки резонаторов и для ваших различных самоделок.

Случайные статьи

Вверх